Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 April 2019 | Story Valentino Ndaba | Photo Charl Devenish
Accounting Students
Pictured are 8 of the 64 UFS School of Accountancy students who form part of the 84.2% pass rate achievers.

Students from the University of the Free State (UFS) School of Accountancy achieved a 84.2% pass rate compared to the national average of 76.2% during the Initial Test of Competence (ITC) examination facilitated by the South African Institute of Chartered Accountants (SAICA).

A total of 64 out of 76 UFS students who attempted the ITC for the first time were successful in the examination. The ITC is known for its challenging nature.  Demographically, our African black students outperformed the 62.1% national pass rate by attaining an impressive 80.6%.

Collective congratulations

Prof Hentie van Wyk, Programme Director at the school, attributed diligence for the high pass rate. “This is due to our student-centred teaching module that was introduced four years ago and committed academic staff of the School of Accountancy from the first to the fourth year.”

Further future surge expected

“With the coming June 2019 ITC sitting, our pass rate for 2019 will most probably be more than 90%. Our three-year rolling average for 2015-2017, 2016-2018 and 2017-2019 were 83%, 86% and 90% respectively. Hopefully we can maintain the upward curve,” said Prof Van Wyk.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept