Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 July 2019 | Story Leonie Bolleurs
Unique building project
Students from the Department of Architecture and their lecturer, Hein Raubenheimer, building a new future for colleague Adana and her family. In 2018 the builders decided to use a combination of clay bricks and earth bricks as major construction material.

When a colleague in the Department of Architecture bought a plot of land in 2014, her joy knew no bounds and she could not wait to share the news with fellow colleague, Hein Raubenheimer.

Raubenheimer, a lecturer in the department, could not help but think that Adana (pseudonym) would, “like many others, promptly erect a ‘dwelling’ of affordable second-hand material”. This made him muse on how he could help in erecting a more ‘permanent’ house for her, her son and daughter.

He related: “The first-year hut-building project was in the making, and my involvement with it made me think about the possibilities of reusing the earth bricks that were formed during the building process for a potential earth-brick dwelling. However, the quality of such bricks could not be guaranteed and a more controlled manner of forming earth bricks had to be investigated.”

Interdisciplinary research
After talking to an architect friend, JT Erasmus, about the possibility of sustainable forms of building an informal dwelling, Raubenheimer was brought into contact with a colleague in the Department of Chemistry, Dr Elizabeth Erasmus. Together, he and Dr Erasmus formulated and submitted an application for interdisciplinary research. Their application was to investigate the testing of polymer-stabilised earth bricks. “To our surprise, our application was successful. The funds prompted us to immediately start preparing the site and purchasing the necessary equipment for making stabilised earth bricks,” said Raubenheimer.

He elaborated: “During the first two years, all the first- to third-year students were involved in the earthworks, foundations, and making of earth bricks. Since 2018, Prof Gerhard Bosman, Associate Professor in the Department of Architecture, became involved with the fourth-year students, focusing on the finishing touches of the building project as well as the service components.”

Economically viable
For the project to be economically viable, the layout of the floor plan was as compact as possible (35 m²). Raubenheimer explained: “Three areas (living, sleeping, washing) were arranged to create some privacy with the minimum structure. The sleeping area was a double volume with a proposed mezzanine floor that could function as a ‘loft’ (second sleeping area).”

According to Raubenheimer, they wanted to build the entire house with stabilised earth bricks, but due to the labour-intensive and time-consuming process of making the bricks, they decided in 2018 to use a combination of clay bricks and earth bricks as major construction material.

Bloemfontein opens its heart

Apart from the approximately 200 Architecture students and lecturers involved in the project, the community of Bloemfontein also opened their hearts and hands widely.

“We were very lucky to get the roof sheets as donation – surplus as a result of the colour difference (Safintra Roofing), a lightweight-steel construction company (Siteform) sponsored the roof structure, UFS Facilities Management donated all the windows (from their scrapyard), and a well-known Bloemfontein construction company (Sebedisan Construction) delivered lots of recycled material with a three-ton truck. There were also several private cash donations from alumni of the Department of Architecture. Local artisans, Diphapang Machabe, April Milela, Kabelo Lando, and Petrus Letsoara also assisted with the project.

With the use of recycled material and earth bricks, the CO2 footprint of the building was minimal. Raubenheimer explained that the small areas with good North orientation, together with the good insulating properties of the earth bricks, is making the interior very comfortable throughout the year. “Good insulation of the roof and ‘loft’ will minimise the need for heating and cooling,” he said.

Hope for the future
If everything runs smoothly, the project will be completed in the spring of 2019. “And then we will have a proper house-warming. Up until now, each phase of the project was an adventure for Adana. In the beginning, she could not believe that anything would come of it; but her appreciation, despite the prolonged construction period, has grown,” said Raubenheimer.

On a personal level, this project also meant a lot to Raubenheimer. “The limited finances and possibility of applied low technology, experimental forms of detailing all contributed to the adventure. The greatest learning curve for me, however, was to experience the ‘neighbourhood’. The most wonderful respect for life on the faces of neighbours and passers-by. The fact that people here seem to have nothing, but then the perception that as a community they have so much caring, time, and love for each other, has given me hope.”

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept