Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 July 2019 | Story Leonie Bolleurs
Unique building project
Students from the Department of Architecture and their lecturer, Hein Raubenheimer, building a new future for colleague Adana and her family. In 2018 the builders decided to use a combination of clay bricks and earth bricks as major construction material.

When a colleague in the Department of Architecture bought a plot of land in 2014, her joy knew no bounds and she could not wait to share the news with fellow colleague, Hein Raubenheimer.

Raubenheimer, a lecturer in the department, could not help but think that Adana (pseudonym) would, “like many others, promptly erect a ‘dwelling’ of affordable second-hand material”. This made him muse on how he could help in erecting a more ‘permanent’ house for her, her son and daughter.

He related: “The first-year hut-building project was in the making, and my involvement with it made me think about the possibilities of reusing the earth bricks that were formed during the building process for a potential earth-brick dwelling. However, the quality of such bricks could not be guaranteed and a more controlled manner of forming earth bricks had to be investigated.”

Interdisciplinary research
After talking to an architect friend, JT Erasmus, about the possibility of sustainable forms of building an informal dwelling, Raubenheimer was brought into contact with a colleague in the Department of Chemistry, Dr Elizabeth Erasmus. Together, he and Dr Erasmus formulated and submitted an application for interdisciplinary research. Their application was to investigate the testing of polymer-stabilised earth bricks. “To our surprise, our application was successful. The funds prompted us to immediately start preparing the site and purchasing the necessary equipment for making stabilised earth bricks,” said Raubenheimer.

He elaborated: “During the first two years, all the first- to third-year students were involved in the earthworks, foundations, and making of earth bricks. Since 2018, Prof Gerhard Bosman, Associate Professor in the Department of Architecture, became involved with the fourth-year students, focusing on the finishing touches of the building project as well as the service components.”

Economically viable
For the project to be economically viable, the layout of the floor plan was as compact as possible (35 m²). Raubenheimer explained: “Three areas (living, sleeping, washing) were arranged to create some privacy with the minimum structure. The sleeping area was a double volume with a proposed mezzanine floor that could function as a ‘loft’ (second sleeping area).”

According to Raubenheimer, they wanted to build the entire house with stabilised earth bricks, but due to the labour-intensive and time-consuming process of making the bricks, they decided in 2018 to use a combination of clay bricks and earth bricks as major construction material.

Bloemfontein opens its heart

Apart from the approximately 200 Architecture students and lecturers involved in the project, the community of Bloemfontein also opened their hearts and hands widely.

“We were very lucky to get the roof sheets as donation – surplus as a result of the colour difference (Safintra Roofing), a lightweight-steel construction company (Siteform) sponsored the roof structure, UFS Facilities Management donated all the windows (from their scrapyard), and a well-known Bloemfontein construction company (Sebedisan Construction) delivered lots of recycled material with a three-ton truck. There were also several private cash donations from alumni of the Department of Architecture. Local artisans, Diphapang Machabe, April Milela, Kabelo Lando, and Petrus Letsoara also assisted with the project.

With the use of recycled material and earth bricks, the CO2 footprint of the building was minimal. Raubenheimer explained that the small areas with good North orientation, together with the good insulating properties of the earth bricks, is making the interior very comfortable throughout the year. “Good insulation of the roof and ‘loft’ will minimise the need for heating and cooling,” he said.

Hope for the future
If everything runs smoothly, the project will be completed in the spring of 2019. “And then we will have a proper house-warming. Up until now, each phase of the project was an adventure for Adana. In the beginning, she could not believe that anything would come of it; but her appreciation, despite the prolonged construction period, has grown,” said Raubenheimer.

On a personal level, this project also meant a lot to Raubenheimer. “The limited finances and possibility of applied low technology, experimental forms of detailing all contributed to the adventure. The greatest learning curve for me, however, was to experience the ‘neighbourhood’. The most wonderful respect for life on the faces of neighbours and passers-by. The fact that people here seem to have nothing, but then the perception that as a community they have so much caring, time, and love for each other, has given me hope.”

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept