Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2019 | Story Valentino Ndaba | Photo Charl Devenish
MEC for Education, Dr Tate Makgoe, presents an award to Khesa Maphakiso from Beacon High School at the ceremony.
MEC for Education, Dr Tate Makgoe, presents an award to Khesa Maphakiso from Beacon High School at the ceremony.

Projections indicate that by 2020 about 80% of all jobs will require some level of competency in Science, Technology, Engineering and Mathematics (STEM). Also, given the rising unemployment rate and the subsequent demand for entrepreneurial skills in the past few years, STEM education has become a priority for South Africa.

A step in the right direction

Equipping young people to be efficient in the world of work and business is a major driver behind the country’s education system. The MEC for Education in the Free State reiterated the importance of STEM subjects. Dr Tate Makgoe addressed about 200 top-performing Grade 12 learners from quintile 1-3 schools in the province who were attending the South African Institute for Chartered Accountants (SAICA) maths camp.

Making mathematics fashionable

The week-long camp recently closed with an awards ceremony which was held on the Bloemfontein Campus of the University of the Free State (UFS). Nine of the creams of the crop of matric learners were honoured for their achievements in mathematics, physical science, and accounting.

Zinhle Gumbi, from Morena Mokopela Secondary School, one of the three Mathematics Top Achiever award recipients has become more determined to choose a maths-related profession. “I have told myself that any career I follow must include maths. Dr Tate Makgoe said we must prove to people that the black child can do it.”

Emerging as one of the Accounting Top Achievers was Albert Ramatsekane from Tsoseletso Secondary School who intends to pursue a Chartered Accountant (CA) qualification. “The camp has boosted my confidence. Now I can choose the CA stream without thinking twice.” 

Sowing the seed and reaping the fruits

Accounting lecturer Mojalefa Mosala was satisfied with the results of the camp. “I am happy to see many familiar faces in my classes who have attended previous camps. It means we’re doing something right.”

Mosala, a former assistant camp organiser, has confidence in the project as it “affords a rare opportunity to learners who have not been exposed to information, the higher learning environment, study skills and motivational figures to experience all of these”. 
Kovsies prides itself in partnering with industry stakeholders to build the future of the country, one maths camp at a time.



News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept