Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2019 | Story Ruan Bruwer | Photo Gerda Steyn Twitter
Gerda Steyn
Gerda Steyn, a former student at the University of the Free State, won her first Comrades race on Sunday, setting a new course record.

Winning the Comrades ultra-marathon is the greatest honour of her life and still feels unreal, said Gerda Steyn a day after winning the race in a record time.
 
The former Kovsie student had an incredible race on Sunday, completing the 86,83 km’s in a time of 05:58:54, which is a new record for women in the up run. It is more than 10 minutes faster than the previous record of 06:09:23 set in 2006.
 
It was also the fourth fastest Comrades time ever by a female in the 94-year history of the race.
 
Greatest honour of my life

 
“Being the Comrades winner is the greatest honour of my life. Thank you to an entire nation for carrying me to the line. It feels like a dream,” Steyn said.
 
The 29-year-old Steyn became the first woman in 30 years to win both the Comrades and Two Oceans in the same year. She also won the Two Oceans in 2018 and came second in the Comrades last year.
 
Steyn, who studied Quantity Surveying and Construction Management at the University of the Free State (UFS) between 2009 and 2012, said the record time was discussed beforehand.
 
I went for it
 
“We felt it was possible, but it wasn’t my main goal right from the start of the race. At the halfway mark, I saw it was possible and I went for it.”
 
According to Steyn, the media attention since her win is quite intense. “But I don’t complain. It is such an honour, so I do it with a smile.”
 
At the Two Oceans ultra-marathon in April, she missed out on the 30-year record time by just 53 seconds.
 
Prof Francis Petersen, UFS Rector and Vice-Chancellor, said Steyn was a proud ambassador of the university. “It is always important for me to see how our former students perform. I would like to congratulate her. Well done. She is carrying the Kovsie name with pride,” Prof Petersen said.
 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept