Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2019 | Story Ruan Bruwer | Photo Gerda Steyn Twitter
Gerda Steyn
Gerda Steyn, a former student at the University of the Free State, won her first Comrades race on Sunday, setting a new course record.

Winning the Comrades ultra-marathon is the greatest honour of her life and still feels unreal, said Gerda Steyn a day after winning the race in a record time.
 
The former Kovsie student had an incredible race on Sunday, completing the 86,83 km’s in a time of 05:58:54, which is a new record for women in the up run. It is more than 10 minutes faster than the previous record of 06:09:23 set in 2006.
 
It was also the fourth fastest Comrades time ever by a female in the 94-year history of the race.
 
Greatest honour of my life

 
“Being the Comrades winner is the greatest honour of my life. Thank you to an entire nation for carrying me to the line. It feels like a dream,” Steyn said.
 
The 29-year-old Steyn became the first woman in 30 years to win both the Comrades and Two Oceans in the same year. She also won the Two Oceans in 2018 and came second in the Comrades last year.
 
Steyn, who studied Quantity Surveying and Construction Management at the University of the Free State (UFS) between 2009 and 2012, said the record time was discussed beforehand.
 
I went for it
 
“We felt it was possible, but it wasn’t my main goal right from the start of the race. At the halfway mark, I saw it was possible and I went for it.”
 
According to Steyn, the media attention since her win is quite intense. “But I don’t complain. It is such an honour, so I do it with a smile.”
 
At the Two Oceans ultra-marathon in April, she missed out on the 30-year record time by just 53 seconds.
 
Prof Francis Petersen, UFS Rector and Vice-Chancellor, said Steyn was a proud ambassador of the university. “It is always important for me to see how our former students perform. I would like to congratulate her. Well done. She is carrying the Kovsie name with pride,” Prof Petersen said.
 

News Archive

Using sugar to make the world a sweeter place
2017-10-13

Description: Deepback sugar Tags: Sugarcane, Dr Deepack Santchurn, Mauritius Sugar Industry Research Institute (MSIRI), Department of Plant Sciences 

Dr Deepack Santchurn, former PhD student in the
Department of Plant Sciences at the UFS,
and plant breeder in the  Mauritius Sugar Industry
Research Institute, with Prof Maryke Labuschagne, left,
Dr Santchurn’s study leader.
Photo: Charl Devenish



Besides it mainly being used for sugar production, sugarcane has emerged as an important alternative for providing clean renewable energy. Dr Deepack Santchurn, who works in the sugarcane breeding department of the Mauritius Sugar Industry Research Institute (MSIRI), believes if he could contribute towards a more environment-friendly and renewable energy through the use of sugarcane biomass, he would consider himself having made a great leap towards a better world. 

Sugarcane is mostly known and exploited for the sugar in its cane stem. According to Dr Santchurn it is not the only thing the crop does well. “Together with certain grasses, it is the finest living collector of sunlight energy and a producer of biomass in unit time. Sugarcane is now recognised worldwide as a potential renewable and environment-friendly bioenergy crop.” 

Significantly more bioenergy can be produced from sugarcane if the production system is not focused on the production and recovery of sucrose alone but on the maximum use to the total above-ground biomass. Diversification within the sugarcane industry is of paramount importance. 

He has been able to identify a few high biomass varieties that can be exploited industrially. One of the varieties is a commercial type with relatively high sugar and low fibre in the cane stem. Dr Santchurn explains: “Its sucrose content is about 0.5% less than the most cultivated commercial variety in Mauritius. Nevertheless, its sugar yield and above-ground biomass yield surpass those of the commercial varieties by more than 24%. The genetic gains compared to commercial varieties were around +50% for total biomass yield and +100% for fibre yield. Its cultivation is strictly related to bio-energy production and the extracted juice can be used as a feed-stock for ethanol and other high-value products.”

Dr Santchurn received his PhD at the UFS’s Department of Plant Sciences during the Winter Graduation Ceremonies in June this year. His study leader was Prof Maryke Labuschagne from the Department of Plant Sciences. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept