Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 April 2019 | Story Xolisa Mnukwa | Photo Vhugala Nthakheni
Uhuru Qwaqwa Arrival
The #UFSWalkToUhuru team arrives at the UFS Qwaqwa Campus on Friday 22 March.

The University of the Free State (UFS) Division of Student Affairs, in collaboration with the UFS Office for International Affairs, have joined hands to drive a fundraising and student-accessibility initiative dubbed, ‘The Walk to Uhuru’ (#UFSWalktoUhuru), which is aimed at raising funds and advocating for the educational rights of the less privileged. 

The project aims to raise funds in excess of R2 million from the public and stakeholders affiliated with the UFS (Kovsie staff and students). The project derives from the 2018/2019 UFS Institutional Student Representative Council (ISRC) mandate ‘Students Must Graduate’. The ISRC mandate aims to source funding opportunities for UFS students to register, and to complete their studies across all three campuses in 2020 and beyond.

The first leg of the project, a 350 km walk from the Bloemfontein to the Qwaqwa Campus, has already taken place and concluded on Friday, 22 March 2019 as planned. The #UFSWalkToUhuru team successfully completed the first leg of their journey to academic freedom for financially disadvantaged students at the UFS. The Uhuru team is now focusing its attention on the second leg and is determined to take on Mount Kilimanjaro (Uhuru) from 20 June to 20 July 2019.

The team sat down for a debriefing session to unpack the overall experience and result of the first half of the initiative, and they all agreed that the walk to Qwaqwa was an enlightening experience. It was a walk that comprised learning opportunities, team building, and goal crushing.

According to Rethabile Motseki, member of the #UFSWalkToUhuru team, the walk to Qwaqwa made a significant impact on the project, as the university community is now aware of the significant goals that the team is trying to accomplish. The team has also resumed their fitness-training programme to ensure that they are ready to take on the Uhuru climb in June.

A media briefing will take place shortly (date to be confirmed) to detail the ongoing fundraising initiatives rolled out by the #UFSWalkToUhuru team.  We implore you, and the nation as a whole, to help establish a better future for disadvantaged UFS students by donating to the initiative.

Students, staff, and the public can support the cause and make contributions/donations to the initiative by visiting the UFS Walk to Uhuru #givengain account page.

For more information, contact UFS SRC President, Sonwabile Dwaba, on DwabaSJ@ufs.ac.za  or Rethabile Motseki on MotsekiR@ufs.ac.za  

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept