Latest News Archive

Please select Category, Year, and then Month to display items
Years
2017 2018 2019 2020
Previous Archive
07 May 2019 | Story Valentino Ndaba | Photo Charl Devenish
Noko Masalesa
Noko Masalesa, Director of Protection Services, in conversation with students and stakeholders to plan a safe way forward.

Safety and security are human rights that constitute social justice. At the centre of the agenda at the University of the Free State’s (UFS) Social Justice Week held on the Bloemfontein Campus from 17-22 April 2019 were discussions about off-campus safety. Stakeholders agreed on an upgrade to security measures in order to ensure the success and wellbeing of the student population.

A call to students

Prof John Mubangizi, Dean of the Faculty of Law, in his capacity as representative of the UFS Rector and Vice-Chancellor, Prof Francis Petersen, expressed his view on institutions of higher learning no longer functioning as ivory towers. “For any initiative to succeed, collaboration is necessary between key roleplayers,” he said.

He aptly pointed out that: “We cannot underscore the importance of safety and security, not only for the university but also for the communities around us. What the university does benefits the community and vice versa. I pledge the university’s commitment to play a leading part to ensure that the collaboration works,” said Prof Mubangizi.

Beefing up security: Who is involved?

In view of the collaborative effort Prof Mubangizi alluded to, the engagement was twofold. First was the roundtable discussion facilitated by Protection Services which then escalated into a public dialogue where students had the opportunity to interact with external delegates.

The South African Police Services, Community Police Forum, Private Security, Mangaung Metropolitan Municipality, Provincial Commissioner, and Deputy Minister of Police were well represented in this critical conversation. Internally, members of Protection Services, Housing and Residence Affairs, Student Affairs, Institute for Social Justice and Reconciliation, Student Representative Council, and the Department of Criminology heard the plight of off-campus safety faced by students.

Changes in the horizon

The discussions culminated with recommendations which will see the future of student safety take a different direction. According to Skhululekile Luwaca, former SRC president, these include “the municipality’s commitment to immediately address issues such as street lights and enforcing by-laws, ensuring an integrated accreditation system, and drafting a policy for off-campus accommodation, running more crime awareness campaigns, and giving police patrols more visibility.”

In addition to resolving to set up a student safety forum with all the stakeholders, the Mangaung Metropolitan Municipality has invited the UFS to join Reclaim the City – a safety forum where practical solutions to crime are devised and implemented on a weekly basis.


News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept