Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 May 2019 | Story Igno van Niekerk | Photo Stephen Collett
Digital storytelling
Collaborating for the common good are from left: Willem Ellis, Karen Venter, Dr Deidre van Rooyen, Prof Hendri Kroukamp, Bishop Billyboy Ramahlele, and Dr Johan van Zyl.

Prof Hendri Kroukamp, Dean of the Faculty of Management Sciences quoted the Cat Stevens song I can’t keep it in, to capture the excitement surrounding the opening of a Digital Storytelling Lab on the Bloemfontein Campus on 10 May 2019.

After months of hard work by Dr Deidre van Rooyen, Willem Ellis, Karen Venter, as well as the staff of the University of the Free State’s (UFS) Centre for Development Support, the Common Good First lab was completed just in time for the launch attended by about 50 delegates from other South African universities, as well as private and public institutions.

Stories meet technology

In a message, from Prof Puleng LenkaBula, Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, informed the audience that the launch heralded the joining of the old world of stories with the new world of digital technology. Julie Adair, Director of Digital Collaboration at Glasgow Caledonian University, Scotland, welcomed the UFS as a partner to this international social innovation collaborative project in a video message. 

Dr Van Rooyen, the project manager for the UFS, explained how she got involved in the Common Good First project, what the benefits of digital storytelling are, as well as what opportunities the lab creates for cooperation between role players involved in social innovation projects. 

Why the Common Good First lab?

The purpose of the lab is to create a digital network to identify, showcase and connect social innovation projects in South Africa to one another and to universities around the world for research, student engagement and learning and teaching. The lab has been fitted with state-of-the-art equipment for recording and digitising the stories that result from social innovation projects.

In a live Skype session with Dr Il-Haam Petersen, Postdoctoral Research Fellow at the Human Sciences Research Council (HSRC), and some of the recent successes of the digital stories in Philippi in the Western Cape were shared.

Bishop Billyboy Ramahlele, UFS Director Community Engagement did the final honours by cutting the ribbon, declaring the lab open, and sharing the dream that the work done in this lab will contribute to positive relationships and cooperation between the university and the community, in making not only the university, but the country and the world a better place.


News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept