Latest News Archive

Please select Category, Year, and then Month to display items
Years
2017 2018 2019 2020
Previous Archive
13 May 2019 | Story Zama Feni | Photo Charl Devenish
Dr Quinton Meyer and Marlena Visagie
National Control Laboratory Deputy Director, Dr Quinton Meyer (right), and Marlena Visagie, Quality Assurance Manager, at the laboratory within their facilities at the University of the Free State.

The University of the Free State-based National Control Laboratory for Biological Products (NCL) has maintained its esteemed status as a pharmaceutical testing laboratory after the South African Accreditation System (SANAS) further endorsed its quality-management systems as of high standard according to the International Standards Organisation’s requirements.

The Director of the NCL, Professor Derek Litthauer, said their laboratory – which is also approved by the World Health Organisation (WHO) – has again achieved the international testing standards. The cherry on top was that the NCL also received a certificate of Good Manufacturing Compliance (GMP) from the South African Health Products Regulatory Authority (SAHPRA). 

NCL is for Africa and the World 

Some of the factors that make the NCL an esteemed institution, is the fact that it is one of 12 laboratories worldwide to perform vaccine testing for the WHO; the NCL is the only vaccine-testing laboratory in the country that performs the final quality-control testing of all human vaccine batches marketed in South Africa on behalf of SAHPRA. 

For example, Prof Litthauer said that the influenza vaccine batches currently available on the South African market, were tested by the NCL for quality before authorising their release for sale to the public. This process is followed for all human vaccines used in SA.

 “In our role as vaccine-testing laboratory for the WHO, the NCL helps to ensure that the vaccines purchased through the WHO prequalification programme for international distribution to resource-limited countries, meet the high standards of quality, safety, and efficiency. 
The NCL was one of the first full members of the WHO NCL Network for Biologicals, which consists of full and associate members of regulatory authorities from more than 30 countries.

The NCL systems are world-class

Prof Litthauer said this achievement is recognition that their laboratory complies with specific international standards with respect to its quality-management system. 
“In practice, it means that the laboratory has all the quality systems in place to ensure high-quality test results. The GMP certification is a further step, meaning that laboratory testing is on the expected level for any pharmaceutical testing laboratory and manufacturer. It is a very strict certification.”

He further mentioned that the NCL is also licensed as a pharmaceutical manufacturer. “Although we do not manufacture, we have to comply with manufacturing standards.”
“It is rare for a pharmaceutical testing laboratory (such as the NCL) outside of a manufacturing context to qualify for both certifications. It means that the NCL complies with exceptionally strict standards for pharmaceutical labs anywhere in the world,” he said.
The certification provides the South African Health Products Regulatory Authority, the World Health Organisation, and other national control laboratories around the world, with the confidence that the test results from the NCL can be trusted.


There can be no compromise for quality 

The NCL Quality Assurance Manager, Mrs Marlena Visagie, said, “It is essential that the NCL complies with the highest international quality-assurance standards to ensure that all the lot-release operations, such as manufacturing review and quality testing, are performed in a reliable and reproducible manner.”

“There can be no compromise when it comes to the quality of medicines which are made available to the public,” she said.

“What makes this special, is that the NCL does not only comply with international ISO/IEC standards for pharmaceutical testing, but also with the additional GMP standards required by a pharmaceutical manufacturer. This means that the NCL must ensure that all its operations, including everything from the way documents are compiled and stored, to the maintenance of equipment and infrastructure as well as staff competency, are performed according to international guidelines.”

All NCL staff share vision of excellence

Prof Litthauer said the NCL has a staff complement of 15 technical, administrative, and support staff.  Four staff members have PhDs, and the rest of the technical staff have master’s or bachelor’s degrees or are trained as medical technologists. “At the moment, our biggest problem is to get enough suitable space to expand our testing,” he said.

Prof Litthauer said, “All the staff members at the NCL share the vision of excellence, which makes this kind of achievement possible.”
The NCL will host the third annual meeting of the WHO NCL Network in November of this year and will then be reassessed again by the WHO as part of the normal three-year cycle of assessments.  

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept