Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2019 | Story Ruan Bruwer | Photo Varsity Sports
Lefébre Rademan
Lefébre Rademan, new captain of the Free State Crinums netball team, could be one of the star players in the Premier League. She is a fifth-year Education student.

The Free State Crinums netball team, a de facto Kovsie team with all 15 squad members enrolled for courses at the University of the Free State (UFS), will draw inspiration from their success in last year’s Varsity netball tournament. The Kovsies won the student competition for a record third time. 

During the weekend of 10 May 2019, the Crinums will play their first match in the 2019 Premier League. They lost a couple of key players in captain Alicia Puren, Protea Khanyisa Chawane, (both playing for the national invitational team in the league), Khomotso Mamburu (moved to Cape Town), and Meagan Roux (injured). They do, however, still have the services of players such as Tanya von Berg (playing in her sixth Premier League, one of only a handful of players to do so), Lefébre Rademan, Sikholiwe Mdletshe, Ané Retief, Gertriana Retief, and Rieze Straeuli. Rademan is the new captain and was one of the standout players in last year’s Varsity netball, earning three Player of the Match awards, including the Player of the Final. 

The team will again be coached by Burta de Kock, who is also the head coach of the Kovsies. Under her leadership, the Crinums won the Premier League for the first three years (2014 to 2016). Last year, the Crinums ended fourth. De Kock will be assisted by Martha Mosoahle-Samm. She is a former Protea assistant coach who also captained South Africa and played for the UFS between 1997 and 1999.

There are four first-year students in the squad of 15 players: Oageng Khasake (wing attack), Ancia Pienaar (goalkeeper), Rolene Streutker (goal shooter), Boitumelo Mahloko (goal defence). Pienaar and Mahloko both represented South Africa at junior level in 2018.

■ Crinums squad: Ané Retief, Gertriana Retief, Jana Scholtz, Lefébre Rademan, Sikholiwe Mdletshe, Tanya von Berg, Rieze Straeuli, Claudia van den Berg, Zandré Smit, Oageng Khasake, Bianca de Wee, Ancia Pienaar, Rolene Streutker, Chanel Vrey, Boitumelo Mahloko.


News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept