Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2019 | Story Ruan Bruwer | Photo Varsity Sports
Lefébre Rademan
Lefébre Rademan, new captain of the Free State Crinums netball team, could be one of the star players in the Premier League. She is a fifth-year Education student.

The Free State Crinums netball team, a de facto Kovsie team with all 15 squad members enrolled for courses at the University of the Free State (UFS), will draw inspiration from their success in last year’s Varsity netball tournament. The Kovsies won the student competition for a record third time. 

During the weekend of 10 May 2019, the Crinums will play their first match in the 2019 Premier League. They lost a couple of key players in captain Alicia Puren, Protea Khanyisa Chawane, (both playing for the national invitational team in the league), Khomotso Mamburu (moved to Cape Town), and Meagan Roux (injured). They do, however, still have the services of players such as Tanya von Berg (playing in her sixth Premier League, one of only a handful of players to do so), Lefébre Rademan, Sikholiwe Mdletshe, Ané Retief, Gertriana Retief, and Rieze Straeuli. Rademan is the new captain and was one of the standout players in last year’s Varsity netball, earning three Player of the Match awards, including the Player of the Final. 

The team will again be coached by Burta de Kock, who is also the head coach of the Kovsies. Under her leadership, the Crinums won the Premier League for the first three years (2014 to 2016). Last year, the Crinums ended fourth. De Kock will be assisted by Martha Mosoahle-Samm. She is a former Protea assistant coach who also captained South Africa and played for the UFS between 1997 and 1999.

There are four first-year students in the squad of 15 players: Oageng Khasake (wing attack), Ancia Pienaar (goalkeeper), Rolene Streutker (goal shooter), Boitumelo Mahloko (goal defence). Pienaar and Mahloko both represented South Africa at junior level in 2018.

■ Crinums squad: Ané Retief, Gertriana Retief, Jana Scholtz, Lefébre Rademan, Sikholiwe Mdletshe, Tanya von Berg, Rieze Straeuli, Claudia van den Berg, Zandré Smit, Oageng Khasake, Bianca de Wee, Ancia Pienaar, Rolene Streutker, Chanel Vrey, Boitumelo Mahloko.


News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept