Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2019 | Story Ruan Bruwer | Photo Varsity Sports
Lefébre Rademan
Lefébre Rademan, new captain of the Free State Crinums netball team, could be one of the star players in the Premier League. She is a fifth-year Education student.

The Free State Crinums netball team, a de facto Kovsie team with all 15 squad members enrolled for courses at the University of the Free State (UFS), will draw inspiration from their success in last year’s Varsity netball tournament. The Kovsies won the student competition for a record third time. 

During the weekend of 10 May 2019, the Crinums will play their first match in the 2019 Premier League. They lost a couple of key players in captain Alicia Puren, Protea Khanyisa Chawane, (both playing for the national invitational team in the league), Khomotso Mamburu (moved to Cape Town), and Meagan Roux (injured). They do, however, still have the services of players such as Tanya von Berg (playing in her sixth Premier League, one of only a handful of players to do so), Lefébre Rademan, Sikholiwe Mdletshe, Ané Retief, Gertriana Retief, and Rieze Straeuli. Rademan is the new captain and was one of the standout players in last year’s Varsity netball, earning three Player of the Match awards, including the Player of the Final. 

The team will again be coached by Burta de Kock, who is also the head coach of the Kovsies. Under her leadership, the Crinums won the Premier League for the first three years (2014 to 2016). Last year, the Crinums ended fourth. De Kock will be assisted by Martha Mosoahle-Samm. She is a former Protea assistant coach who also captained South Africa and played for the UFS between 1997 and 1999.

There are four first-year students in the squad of 15 players: Oageng Khasake (wing attack), Ancia Pienaar (goalkeeper), Rolene Streutker (goal shooter), Boitumelo Mahloko (goal defence). Pienaar and Mahloko both represented South Africa at junior level in 2018.

■ Crinums squad: Ané Retief, Gertriana Retief, Jana Scholtz, Lefébre Rademan, Sikholiwe Mdletshe, Tanya von Berg, Rieze Straeuli, Claudia van den Berg, Zandré Smit, Oageng Khasake, Bianca de Wee, Ancia Pienaar, Rolene Streutker, Chanel Vrey, Boitumelo Mahloko.


News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept