Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2019 | Story Ruan Bruwer | Photo Varsity Sports
Lefébre Rademan
Lefébre Rademan, new captain of the Free State Crinums netball team, could be one of the star players in the Premier League. She is a fifth-year Education student.

The Free State Crinums netball team, a de facto Kovsie team with all 15 squad members enrolled for courses at the University of the Free State (UFS), will draw inspiration from their success in last year’s Varsity netball tournament. The Kovsies won the student competition for a record third time. 

During the weekend of 10 May 2019, the Crinums will play their first match in the 2019 Premier League. They lost a couple of key players in captain Alicia Puren, Protea Khanyisa Chawane, (both playing for the national invitational team in the league), Khomotso Mamburu (moved to Cape Town), and Meagan Roux (injured). They do, however, still have the services of players such as Tanya von Berg (playing in her sixth Premier League, one of only a handful of players to do so), Lefébre Rademan, Sikholiwe Mdletshe, Ané Retief, Gertriana Retief, and Rieze Straeuli. Rademan is the new captain and was one of the standout players in last year’s Varsity netball, earning three Player of the Match awards, including the Player of the Final. 

The team will again be coached by Burta de Kock, who is also the head coach of the Kovsies. Under her leadership, the Crinums won the Premier League for the first three years (2014 to 2016). Last year, the Crinums ended fourth. De Kock will be assisted by Martha Mosoahle-Samm. She is a former Protea assistant coach who also captained South Africa and played for the UFS between 1997 and 1999.

There are four first-year students in the squad of 15 players: Oageng Khasake (wing attack), Ancia Pienaar (goalkeeper), Rolene Streutker (goal shooter), Boitumelo Mahloko (goal defence). Pienaar and Mahloko both represented South Africa at junior level in 2018.

■ Crinums squad: Ané Retief, Gertriana Retief, Jana Scholtz, Lefébre Rademan, Sikholiwe Mdletshe, Tanya von Berg, Rieze Straeuli, Claudia van den Berg, Zandré Smit, Oageng Khasake, Bianca de Wee, Ancia Pienaar, Rolene Streutker, Chanel Vrey, Boitumelo Mahloko.


News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept