Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Johan Roux
Prof Zakkie Pretorius
Prof Zakkie Pretorius, Research Fellow at the UFS Department of Plant Sciences.

Prof Zakkie Pretorius, Research Fellow, and Prof Botma Visser, Associate Professor, both from the Department of Plant Sciences at the University of the Free State (UFS), partnered in a ground-breaking research project headed by Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. Together, these scientists solved a 20-year-old mystery, uncovering the origins of one of the world’s deadliest strains of cereal rust disease.

The manuscript, with the title, Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation, was accepted for publication in Nature Communications.

According to a statement released by CSIRO, research shows that the devastating Ug99 strain of the wheat stem-rust fungus was not the result of a sexual cross between different rust strains as previously thought, but in fact was created when fungal strands simply fused to create a new hybrid strain.

This process is called somatic hybridisation and enables fungi to merge their cells and exchange genetic material without going through a complex sexual reproduction cycle. The study found that half of Ug99’s genetic material came from a strain that occurred in Southern Africa around 100 years ago and eventually spread to Australia.

The discovery implies that other crop-destroying rust strains could hybridise elsewhere with Ug99, for example, to exchange genetic material and create a whole new enemy.

While there was some speculation that rust strains could hybridise – based on laboratory studies in the 1960s as well as some earlier studies on the topic – this comprehensive research now provided the first genomic evidence that the process can generate new strains.

History of Ug99

Prof Pretorius was the first person to describe the dangerous Ug99 isolate, confirming the ability of the isolate to leave the Sr31 resistance gene ineffective (up to that time, effective against all known wheat stem-rust races). This laid the basis for international concern.

He named the field sample Ug99, based on the country of origin (Uganda) and year of sample collection (1999). 

“The Sr31 resistance gene and associated traits were so effective that the gene occurred in almost 70% of CIMMYT’s (Mexican-based International Maize and Wheat Improvement Center) spring wheat germplasm. In addition, many popular cultivars containing the gene were released around the world.”

“Ug99 then disappeared for a few years. When the race re-appeared in East Africa, it caused localised but severe epidemics,” he said.

Prof Pretorius continues: “Leading wheat breeders and pathologists were concerned that Ug99 could destroy wheat production in many global regions where wheat is critical for food security. Thus, in 2005, Dr Norman Borlaug, Nobel laureate and father of the green revolution, called for a meeting in Kenya where a global effort to combat the threat was initiated. The international wheat research community was mobilised and with funding primarily from the Bill and Melinda Gates Foundation and coordinated by Cornell University in the USA, research commenced.”

wheat stem rust

Wheat stem rust 14: Rust diseases are the cause of extensive crop losses each year. With this recent discovery, published in 
Nature Communications, scientists can now better identify the resistance genes which can be bred into wheat varieties to give crops 
long-lasting protection against rust. (Photo: Supplied) 

“From field trials in Kenya, it soon became apparent that 90% of the world’s wheat varieties were susceptible to Ug99. Although breeding and selection for resistance started in earnest, the pathogen adapted, gaining virulence for other previously effective resistance genes. At present, 13 races have been described within the Ug99 group occurring in 13 countries, mostly in Africa, but also in Yemen and Iran. Five of these races are present in South Africa, all confirmed by scientists from the UFS and ARC-Small Grain in Bethlehem. The original Ug99 has, however, never been detected in South Africa.”

Combined efforts

Rusts are common fungal diseases of plants. The spores of the fungus attach themselves to the stems and leaves of wheat plants and essentially suck the nutrients from the plant. Plants either die or produce shrivelled and low-quality grain. 

Group Leader at CSIRO, Dr Melania Figueroa, agrees that Ug99 is considered the most threatening of all rusts, as it has managed to overcome most stem rust-resistance genes used in wheat varieties.

“There is some good news, however; the better you know your enemy, the more equipped you are to fight against it. Knowing how these pathogens come about means we can better predict how they are likely to change in the future and better determine which resistance genes can be bred into wheat varieties to give long-lasting protection.”

Earlier this year, CSIRO worked with the University of Minnesota and the 2Blades Foundation to improve wheat resistance by stacking five resistance genes into the one wheat plant to combat wheat stem rust. 

The breakthrough came as Dr Figueroa’s group was sequencing Ug99 (then at the University of Minnesota), and at the same time a CSIRO team led by Dr Peter Dodds was sequencing Pgt21 in Australia (Pgt21 is a rust strain that was first seen in South Africa in the 1920s and believed to have been carried to Australia in the 1950s by wind currents). When the two groups compared results, they found that the two pathogens share an almost identical nucleus and therefore half of their DNA.

“This discovery will make it possible to develop better methods to screen for varieties with strong resistance to disease,” said Dr Figueroa.

Molecular fingerprinting

In addition to infection studies, molecular fingerprinting by members of the South African Ug99 race group led by Prof Botma Visser at the UFS, confirmed their genetic placement in context with Ug99 and other global stem rust races. The availability of the original Ug99 collection, along with other local rust isolates in long-term storage at the UFS, was essential to the success of the current research.

Despite the continued evolution of stem-rust variants, excellent progress has been made worldwide in the breeding of resistant wheat cultivars, including in South Africa. With funding from the Winter Cereal Trust, Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences at the UFS, is responsible for the annual testing of all commercial wheat cultivars and advanced breeding lines for appropriate stem rust races.

Dr Melania Figueroa
Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Photo: Kate Langford

News Archive

White Horse to bring enchantment to Free State Arts Festival
2015-07-09

White Horse Project: Concept, Jess Oliveiri & Parachutes for Ladies; Project Manager, Mandi Bezuidenhout; Video, Louis Kruger; Costume, Lesiba Mabitsela; Performers, Gali Malebo, Chris Kleynhans, Busisiwe Matutu, Johandi du Plessis, Elrie du Toit.

A University of the Free State (UFS) and Free State Arts Festival initiative, the Programme for Innovation in Artform Development (PIAD/PIKO) has worked together with Australian artist, Jess Olivieri (Parachutes for Ladies), to bring visitors and spectators the fantastical and mythical White Horse. The UFS has served as home for the festival for a number of years, and is pleased to take part in bringing this communal project to the arts community that will gather at the annual festival.

The White Horse project begins Sunday 12 July 2015 at 15:00 at the Tweetoringkerk in Bloemfontein, launching the arts festival, while capturing the interest of many members of the Bloemfontein community as well as that of the UFS. The project itself will consist of about 200 members of the local community coming together for workshops in which they will be “reimagining” the White Horse. Olivieri will lead the workshops, which she also developed, assisted by Gali Malebo.

“The White Horse project sits within the contested nature of the White Horse - it is in this in-between space that new mythologies and narratives will be told. The project addresses, celebrates, reconfigures, and allows space for multiple narratives.  Given the debate on statues and symbols, the White Horse offers an opportunity to re-purpose and re-imagine symbols in Bloemfontein,” said Olivieri.

Photograph by David Goldblatt, Sculpted by Kagiso Pat Mautloa, a memorial to those who died while in the detention of the Security Police in this building formerly known as John Vorster Square, now Johannesburg Central Police Station. 27 February 2012, Silver gelatin print on fibre based paper, 98 x 120cm

The White Horse project is supported by the Australia Council for the Arts, Free State Department of Sport, Arts, Culture and Recreation, SituateART in Festivals, Salamanca Arts Centre, Arts NSW, NAVA, Creative Partnerships Australia and the University of Sydney.

Spectators can also look forward to the work of major artists including David Goldblatt’s photographic exhibition titled Structures of Dominion and Democracy at 20:00 on Monday 13 July 2015 at the Johannes Stegmann Art Gallery. In this exhibition, he has photographed everyday sites that contain historical narratives.

Work from other artists at the Arts Festival include Blowing in the Wind (19:00 on Monday 13 July 2015 in the Centenary Gallery), curated by Carol Brown, which is an exhibition that delves into issues of environmental and human exploitation. Angela de Jesus, curator of the UFS Johannes Stegmann Art Gallery, will be curating, [my] PLEK | PLACE (18:30 on Monday 13 July 2015 in the Scaena foyer), in which the artists explore location, space, site, and/or ownership.

The Free State Arts festival begins on 13 July 2015.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept