Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2019 | Story Rulanzen Martin | Photo Charl Devenish
Kovsies Multilingual Mokete
The Multilingual Mokete embodies the ideals of the university to become inclusive, while promoting a multicultural environment.

The first Kovsies Multilingual Mokete was a celebration of language and culture; it is a commitment by the University of the Free State (UFS) to nurture an attitude of inclusiveness and acceptance on all three of its campuses. Hosted on the Bloemfontein Campus on Wednesday 18 September 2019, the mokete was a hype of activity with drama, poetry, music, dance, and scrumptious cultural cuisine.

“This initiative was coordinated to promote and celebrate all our regional languages, but also important – our regional cultures.” This was the words of Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, on opening the first Kovsies Multilingual Mokete.

The Mokete stage came alive with the impeccable voices of our students and staff as they personified multilingualism through the spoken word in the form of poems, the drama production, Dogg’s Hamlet in the Scaena, praise songs, and dance. A mural featuring individual artworks was also on display during the mokete, as well as a screening of the movie, The Visitor.

The Mokete was concluded by Simple Stories, a band of former Kovsie students, with Early B as the main act.  The People’s Choice Award winner of the day was Soetbravado, winners of the UFS SingOff competition.

“I think the inaugural Multilanguage festival is full of potential. Tolerance and understanding of different cultures are what I see here. I think it’s amazing and I would recommend the UFS to continue with it,” says Jon-Dylon Petersen, former SRC member and final-year Quantity Surveying and Construction Management student. 

Kovsies First Multilingual Mokete
The traditional outfits made for a colourful Mokete. Photo:Charl Devenish

Mokete part of UFS project to foster sense of belonging


The mokete is furthermore presented in support of the Integrated Transformation Plan (ITP) work streams on Teaching and Learning, Student and Staff Experience, and the Multi-Campus Model. “As a university, we are proud of the many languages and cultures which form part of this university. It creates a level of diversity and it is through diversity that we can build strength within the university,” says Prof Petersen. 

This initiative of multilingualism is part of the university’s language policy, which promotes a sense of belonging and acceptance among people. “We want to create opportunities and platforms and campuses where everyone should feel welcome, and to create the ability for each culture and language group to also learn from one another.”

The ultimate goal is to use the multilingual initiatives to prepare our students for the multilingual and multicultural world, but also to stay connected to our own heritage and background. 

Dogg's Hamlet
The play Dogg's Hamlet was showcased in the Scaena Theatre during the Mokete. Photo: Charl Devenish

Mokete should become an annual event 


The reaction to the mokete was overwhelmingly positive and it was well received in the Kovsie community. “It’s a beautiful experience to see how academics can come to a university and showcase not only different languages, but different cultures; it’s something which should continue in the spirit of ubuntu and diversity, and can maybe become a national festival,” says Almondreaux Williams, third-year LLB student.

Not only was the mokete a celebration of multilingualism at the UFS; it was also a platform to express different cultures in the form of traditional attire.

''It’s getting people together. All of us, all the cultural groups are here together. The performances were awesome,” says Sibongile Witbooi, a third-year Geology student and Residence Committee member for Culture at Akasia residence. 

Multilingual Mokete
Authentic South African cuisine was on the menu for the day. Moketers could enjoy array of flavours from bobotie and rice to
chesanyama and pap. Photo: Charl Devenish


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept