Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 April 2020 | Story Department of Communication and Marketing | Photo Charl Devenish
Farmovs
In 2019, FARMOVS was pre-qualified by the WHO to support clinical studies aimed at improving access to quality generic medicines across the globe.

The University of the Free State (UFS) is committed to supporting government’s efforts to overcome the COVID-19 pandemic. During this challenging time, dedicated staff members at the UFS continue to provide services as a testimony to their commitment to advance public knowledge of COVID-19 for the greater good of South Africa.

The following is a synopsis of the areas in which the UFS is actively assisting.

Public Health Emergency Solidarity Trial
Clinicians from the Department of Internal Medicine, the Department of Critical Care, and the Division of Virology will be working with FARMOVS to participate in the Public Health Emergency Solidarity Trial initiated by the World Health Organization (WHO). This international randomised trial will evaluate four treatment options (remdesivir, lopinavir/ritonavir, lopinavir/ritonavir plus interferon, chloroquine or hydroxychloroquine) for the treatment of COVID-19. 

The trial is expected to include more than 45 countries worldwide, including a number of South African sites. 

Farmovs

FARMOVS is in a planning process to support all the Bloemfontein hospitals, including Pelonomi, Universitas, 3 Military Hospital, Mediclinic, and Rosepark, in conducting the largest global trial on COVID-19 – the Public Health Emergency Solidarity Trial, under leadership of the WHO.   

Negotiations are ongoing between the UFS and the Department of Health in the Free State for FARMOVS to offer support with the continuation of healthcare to non-COVID-19 patients in an attempt to free up space at Universitas Hospital for isolation of COVID-19 patients. 

In 2019, FARMOVS was pre-qualified by the WHO to support clinical studies aimed at improving access to quality generic medicines across the globe.  FARMOVS also receives feasibility requests for support with the evaluation of existing drugs (repurposing) as well as the development of novel drugs for the treatment of COVID-19 – this is an ongoing process.

Disaster Management Training and Education Centre (DiMTEC)
DiMTEC represents the UFS on the Provincial Joint Operation Centre (PROVJOC). The PROVJOC is a fully equipped, dedicated facility that is proactively established to enable all relevant role players /disciplines to jointly manage all safety and security-related aspects of any planned event or any major incident which has occurred or is imminent – especially in the response and recovery operations phase – at the strategic and/or tactical level, using the Unified Command System. This facility is also linked to all other established safety and security centres.

Research and Innovation
The UFS hosts a SARChI Research Chair in vector-borne and zoonotic diseases, and recently invested in the establishment of a biosafety level-3 facility. Hence, there is expertise on the campus to plan and conduct research on zoonotic and medically significant viruses. In addition, there are research groups focusing on protein expression systems with potential for utilisation in the development of diagnostic assays with application in either diagnosis or surveillance.

Currently, researchers at the UFS have established several projects that will contribute directly towards the COVID-19 outbreak.


News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept