Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 April 2020 | Story Department of Communication and Marketing | Photo Charl Devenish
Farmovs
In 2019, FARMOVS was pre-qualified by the WHO to support clinical studies aimed at improving access to quality generic medicines across the globe.

The University of the Free State (UFS) is committed to supporting government’s efforts to overcome the COVID-19 pandemic. During this challenging time, dedicated staff members at the UFS continue to provide services as a testimony to their commitment to advance public knowledge of COVID-19 for the greater good of South Africa.

The following is a synopsis of the areas in which the UFS is actively assisting.

Public Health Emergency Solidarity Trial
Clinicians from the Department of Internal Medicine, the Department of Critical Care, and the Division of Virology will be working with FARMOVS to participate in the Public Health Emergency Solidarity Trial initiated by the World Health Organization (WHO). This international randomised trial will evaluate four treatment options (remdesivir, lopinavir/ritonavir, lopinavir/ritonavir plus interferon, chloroquine or hydroxychloroquine) for the treatment of COVID-19. 

The trial is expected to include more than 45 countries worldwide, including a number of South African sites. 

Farmovs

FARMOVS is in a planning process to support all the Bloemfontein hospitals, including Pelonomi, Universitas, 3 Military Hospital, Mediclinic, and Rosepark, in conducting the largest global trial on COVID-19 – the Public Health Emergency Solidarity Trial, under leadership of the WHO.   

Negotiations are ongoing between the UFS and the Department of Health in the Free State for FARMOVS to offer support with the continuation of healthcare to non-COVID-19 patients in an attempt to free up space at Universitas Hospital for isolation of COVID-19 patients. 

In 2019, FARMOVS was pre-qualified by the WHO to support clinical studies aimed at improving access to quality generic medicines across the globe.  FARMOVS also receives feasibility requests for support with the evaluation of existing drugs (repurposing) as well as the development of novel drugs for the treatment of COVID-19 – this is an ongoing process.

Disaster Management Training and Education Centre (DiMTEC)
DiMTEC represents the UFS on the Provincial Joint Operation Centre (PROVJOC). The PROVJOC is a fully equipped, dedicated facility that is proactively established to enable all relevant role players /disciplines to jointly manage all safety and security-related aspects of any planned event or any major incident which has occurred or is imminent – especially in the response and recovery operations phase – at the strategic and/or tactical level, using the Unified Command System. This facility is also linked to all other established safety and security centres.

Research and Innovation
The UFS hosts a SARChI Research Chair in vector-borne and zoonotic diseases, and recently invested in the establishment of a biosafety level-3 facility. Hence, there is expertise on the campus to plan and conduct research on zoonotic and medically significant viruses. In addition, there are research groups focusing on protein expression systems with potential for utilisation in the development of diagnostic assays with application in either diagnosis or surveillance.

Currently, researchers at the UFS have established several projects that will contribute directly towards the COVID-19 outbreak.


News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept