Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 April 2020 | Story Department of Communication and Marketing | Photo Charl Devenish
Farmovs
In 2019, FARMOVS was pre-qualified by the WHO to support clinical studies aimed at improving access to quality generic medicines across the globe.

The University of the Free State (UFS) is committed to supporting government’s efforts to overcome the COVID-19 pandemic. During this challenging time, dedicated staff members at the UFS continue to provide services as a testimony to their commitment to advance public knowledge of COVID-19 for the greater good of South Africa.

The following is a synopsis of the areas in which the UFS is actively assisting.

Public Health Emergency Solidarity Trial
Clinicians from the Department of Internal Medicine, the Department of Critical Care, and the Division of Virology will be working with FARMOVS to participate in the Public Health Emergency Solidarity Trial initiated by the World Health Organization (WHO). This international randomised trial will evaluate four treatment options (remdesivir, lopinavir/ritonavir, lopinavir/ritonavir plus interferon, chloroquine or hydroxychloroquine) for the treatment of COVID-19. 

The trial is expected to include more than 45 countries worldwide, including a number of South African sites. 

Farmovs

FARMOVS is in a planning process to support all the Bloemfontein hospitals, including Pelonomi, Universitas, 3 Military Hospital, Mediclinic, and Rosepark, in conducting the largest global trial on COVID-19 – the Public Health Emergency Solidarity Trial, under leadership of the WHO.   

Negotiations are ongoing between the UFS and the Department of Health in the Free State for FARMOVS to offer support with the continuation of healthcare to non-COVID-19 patients in an attempt to free up space at Universitas Hospital for isolation of COVID-19 patients. 

In 2019, FARMOVS was pre-qualified by the WHO to support clinical studies aimed at improving access to quality generic medicines across the globe.  FARMOVS also receives feasibility requests for support with the evaluation of existing drugs (repurposing) as well as the development of novel drugs for the treatment of COVID-19 – this is an ongoing process.

Disaster Management Training and Education Centre (DiMTEC)
DiMTEC represents the UFS on the Provincial Joint Operation Centre (PROVJOC). The PROVJOC is a fully equipped, dedicated facility that is proactively established to enable all relevant role players /disciplines to jointly manage all safety and security-related aspects of any planned event or any major incident which has occurred or is imminent – especially in the response and recovery operations phase – at the strategic and/or tactical level, using the Unified Command System. This facility is also linked to all other established safety and security centres.

Research and Innovation
The UFS hosts a SARChI Research Chair in vector-borne and zoonotic diseases, and recently invested in the establishment of a biosafety level-3 facility. Hence, there is expertise on the campus to plan and conduct research on zoonotic and medically significant viruses. In addition, there are research groups focusing on protein expression systems with potential for utilisation in the development of diagnostic assays with application in either diagnosis or surveillance.

Currently, researchers at the UFS have established several projects that will contribute directly towards the COVID-19 outbreak.


News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept