Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2020 | Story Jóhann Thormählen | Photo Varsity Sports
Shindré-Lee Simmons, Kovsies’ women’s hockey captain, has represented South Africa at U21 level and has been playing for the UFS for five years.

It is time to unite and stand up against gender-based violence (GBV) to address and eradicate this scourge in society. This is the strong message from female athletes of the University of the Free State (UFS) in a month where the focus will be on women. As South Africa commemorates Women’s Day on 9 August 2020, the UFS shines a spotlight on women, calling on all South Africans to challenge, fight, and eradicate all forms of gender-based violence.

Speaking out against GBV, UFS sport stars Sne Mdletshe, Lynique Beneke, Shindré-Lee Simmons, Kesa Molotsane, Casey-Jean Botha, Lefébre Rademan, and Noxolo Magudu have partnered with KovsieSport in condemning any form of violence against women. They added their voices to a video campaign aimed at raising awareness of violence against women. The campaign involves athletes, coaches, administrators, and alumni, and consists of a series of videos that will be featured on UFS platforms.

Increasing impact 

 Mdletshe, Kovsies’ netball captain, is one of the sports stars featured   in the first video of the series. She says it is crucial to address GBV. “We need to tackle it head on, because we cannot carry on like this.”

UFS Olympic long jumper, Lynique Beneke, says GBV needs attention, as it will only get worse if not addressed seriously. “This has been breeding for decades, where it’s acceptable or often justified.

Kovsie long jumper, Lynique Beneke, is in the South African Olympic squad and
will be in contention to take part in her 
second Olympic Games in Tokyo in 2021.
Photo: Hannes Naude

Shindré-Lee Simmons, Kovsies’ women’s hockey captain, says it is important to be frank about GBV in South Africa, “as its prevalence has had an increasing impact on families and the country”

Influence of sport

Godfrey Tenoff, Head of the KovsieSport GBV campaign, says the video campaign will be a continuous project for Kovsiesport, as GBV is a threat to everyone, including UFS sportsmen and sportswomen. “This is specifically crucial during the COVID-19 pandemic. Sport will be an integral part of our strategy to highlight and eventually eradicate gender-based violence."

Unique platform

Simmons says it is crucial for sports stars to use the platform they have to address the issue and educate others.

“We as athletes have the platform to speak up and people will listen,” says Mdletshe.

Sne Mdletshe, KovsieSport Junior Sportswoman of 2019, was appointed captain of the
Kovsies netball team in 2020. S
he is also the captain of the Baby Proteas.
Photo: Varsity Sports

According to Beneke, sport can promote change. “We are uniquely positioned to support and model healthy relationships, values, and norms that can reduce and end gender-based violence.


Watch the first video, called ‘Enough’, as part of the KovsieSport campaign against GBV.




News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept