Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story Andre Damons | Photo Supplied
The research team helps a giraffe to get up after they have finished collecting data.

Researchers from the University of the Free State (UFS) hope their research to investigate why some animals prefer or avoid some habitats, will also create awareness for the plight of giraffes which have lost more than 80% of some of their subspecies in East Africa and are facing extinction in the wild.

Dr Marietjie Schutte-Smith, Senior Lecturer in the Department of Chemistry, says the collaborative research being done in South Africa is very unique and could help save subspecies from the brink of extinction – as South Africa has managed to double its giraffe numbers whilst subspecies have declined tremendously.

Why some animals prefer or avoid some habitats

“By using modern analysis techniques and instruments (such as drones and GPS devices), it is possible to study complex environments on a spatial ecology scale and has created the opportunity to investigate why some animals prefer or avoid some habitats,” explains wildlife expert Dr Francois Deacon.

“This in turn opened the door to explore geographic, soil and nutritional qualities the giraffe might prefer or avoid. This is one of the main reasons we are exploring the different factors and driving forces behind a large herbivore’s habitat selection, well-being, body condition parameters and physiological adaptations,” Dr Deacon says.

Veld conditions, plant species composition, tree densities and other available resources such as production yield and water quality determine reproduction successes and how animals disperse, move and distribute over an area. Spatial and ecological distributions of giraffe specifically depend on habitat resources and qualities that in turn affect their complex behavioral tactics and survival.

Strange habits

The research was started back in 2010 by Dr Deacon and Prof Nico Smit from the Department of Animal, Wildlife and Grassland Sciences at the UFS with the pioneering of GPS devices to investigate giraffe spatial ecology and habitat use. The current study was initiated as to why the giraffe would utilise one area more than the other, even if the two habitats had the same tree species, says Dr Schutte-Smith.

Dr Deacon contacted Prof Hendrik Visser and Dr Schutte-Smith from the Department of Chemistry for a possible collaborative effort. Ms Jeaneme Kuhn started her MSc research degree on this project in January 2019 and completed her degree in August 2020 with distinction.

Dr Schutte-Smith says from research done at Rooipoort Nature Reserve it was found that a certain group of giraffes had the strange habit of only eating from specific trees, avoiding similar trees a few metres away. “We wanted to see if this behaviour was due to chemical influences, i.e. if there are specific minerals that are possibly in excess at some places which they avoid, especially since there are mines close by.”

Aim of the research

The main aim of this MSc Chemistry degree, according to Dr Schutte-Smith, is to validate an analytical method for testing leaves and soil samples, using IPC, to see if heavy metals (in excess) are present in the soil, leaves and water and whether this has an influence on the browsing pattern of the giraffes. “Then as secondary aims (for the collaborative effort) we would like to investigate if the giraffe can select one area above the other (core home ranges), to understand what the qualities are that they would select for in the preferred area and what the qualities they avoid are in the other. And lastly to understand what the minimum requirements are to keep the animals happy and healthy, but also to investigate how they search for these qualities,” says Dr Schutte-Smith.

Giraffe conservation

Besides creating awareness of the plight of giraffes, the researchers also aim to create a model for conservation via research and education to be used as an example for other countries. This model incorporates students, academia, professionals, sponsors and stakeholders that cover various topics relating to giraffe education, management and conservation.

They would also like to see the UFS as the institution that has contributed the most to giraffe conservation strategies in Africa by being the leading university in the collection and analysis of information about giraffes and their habitats, increasing conservation education awareness about giraffes and African biodiversity and to develop national and/or regional plans aimed at giraffe conservation.

The research team successfully applied for funding which they used for chemicals and solvents to perform testing as well as sampling.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept