Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story Andre Damons | Photo Supplied
The research team helps a giraffe to get up after they have finished collecting data.

Researchers from the University of the Free State (UFS) hope their research to investigate why some animals prefer or avoid some habitats, will also create awareness for the plight of giraffes which have lost more than 80% of some of their subspecies in East Africa and are facing extinction in the wild.

Dr Marietjie Schutte-Smith, Senior Lecturer in the Department of Chemistry, says the collaborative research being done in South Africa is very unique and could help save subspecies from the brink of extinction – as South Africa has managed to double its giraffe numbers whilst subspecies have declined tremendously.

Why some animals prefer or avoid some habitats

“By using modern analysis techniques and instruments (such as drones and GPS devices), it is possible to study complex environments on a spatial ecology scale and has created the opportunity to investigate why some animals prefer or avoid some habitats,” explains wildlife expert Dr Francois Deacon.

“This in turn opened the door to explore geographic, soil and nutritional qualities the giraffe might prefer or avoid. This is one of the main reasons we are exploring the different factors and driving forces behind a large herbivore’s habitat selection, well-being, body condition parameters and physiological adaptations,” Dr Deacon says.

Veld conditions, plant species composition, tree densities and other available resources such as production yield and water quality determine reproduction successes and how animals disperse, move and distribute over an area. Spatial and ecological distributions of giraffe specifically depend on habitat resources and qualities that in turn affect their complex behavioral tactics and survival.

Strange habits

The research was started back in 2010 by Dr Deacon and Prof Nico Smit from the Department of Animal, Wildlife and Grassland Sciences at the UFS with the pioneering of GPS devices to investigate giraffe spatial ecology and habitat use. The current study was initiated as to why the giraffe would utilise one area more than the other, even if the two habitats had the same tree species, says Dr Schutte-Smith.

Dr Deacon contacted Prof Hendrik Visser and Dr Schutte-Smith from the Department of Chemistry for a possible collaborative effort. Ms Jeaneme Kuhn started her MSc research degree on this project in January 2019 and completed her degree in August 2020 with distinction.

Dr Schutte-Smith says from research done at Rooipoort Nature Reserve it was found that a certain group of giraffes had the strange habit of only eating from specific trees, avoiding similar trees a few metres away. “We wanted to see if this behaviour was due to chemical influences, i.e. if there are specific minerals that are possibly in excess at some places which they avoid, especially since there are mines close by.”

Aim of the research

The main aim of this MSc Chemistry degree, according to Dr Schutte-Smith, is to validate an analytical method for testing leaves and soil samples, using IPC, to see if heavy metals (in excess) are present in the soil, leaves and water and whether this has an influence on the browsing pattern of the giraffes. “Then as secondary aims (for the collaborative effort) we would like to investigate if the giraffe can select one area above the other (core home ranges), to understand what the qualities are that they would select for in the preferred area and what the qualities they avoid are in the other. And lastly to understand what the minimum requirements are to keep the animals happy and healthy, but also to investigate how they search for these qualities,” says Dr Schutte-Smith.

Giraffe conservation

Besides creating awareness of the plight of giraffes, the researchers also aim to create a model for conservation via research and education to be used as an example for other countries. This model incorporates students, academia, professionals, sponsors and stakeholders that cover various topics relating to giraffe education, management and conservation.

They would also like to see the UFS as the institution that has contributed the most to giraffe conservation strategies in Africa by being the leading university in the collection and analysis of information about giraffes and their habitats, increasing conservation education awareness about giraffes and African biodiversity and to develop national and/or regional plans aimed at giraffe conservation.

The research team successfully applied for funding which they used for chemicals and solvents to perform testing as well as sampling.

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept