Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 July 2020 | Story Thabo Kessah | Photo Supplied
Breathtaking views of the misty Bvumba mountains.

While the Afromontane Research Unit (ARU) will always have a core focus on the sustainable development of the Maloti-Drakensberg (Lesotho-South Africa), the Southern African region is also very important to the unit. The primary reason for this is that Southern African mountains – the most important water-production landscapes in our drought-prone region – have no collective voice for their sustainable management. As such, there is no regional science-policy-action pipeline to secure these mountains for interventions to ensure that they can still produce key ecosystem services under global change. This is in contrast to East Africa where there is a much better-established community of practice for the charismatic African giants such as Mount Kilimanjaro. 

ARU-Southern African collaboration
To this end, the Director of the ARU, Dr Ralph Clark, revealed that the ARU has close links with academics, practitioners, and lay experts in Zimbabwe for the careful documenting of mountain biodiversity in the Manica Highlands. This is a trans-national mountain system critical for water supply to both Zimbabwe and Mozambique. The Bvumba (‘mist’ in Shona) Mountains are situated in the centre of the Manica Highlands. The name Bvumba is derived from the regular mist covering these mountains.

“The Bvumba has a complex socio-political history extending far back, before the arrival of the Portuguese in the 1400s. Despite this history of human occupation, and despite a century of botanical exploration in the 20th century, a comprehensive list of plant species – including endemic species – has never been published for the Bvumba. Such basic lists are essential for foundational knowledge that can drive sustainable development and responsible management of natural resources,” Dr Clark said.

The ARU and partners have collaborated to compile records of the first comprehensive species list for the Bvumba. “This project was done in partnership with the Harare Herbarium, Belgium’s Meise Botanical Gardens, the Flora of Zimbabwe and Mozambique projects, the Biodiversity Foundation for Africa, and the UK’s Royal Botanical Gardens, Kew. It was recently completed with a publication in the journal PhytoKeys.”

Bvumba’s hundreds of species
The Bvumba has a plant species complement of 1 127 native taxa in an area of only 276 square kilometres. “There is remarkable fern and orchid diversity in these mountains, with 137 fern species that is considered to be the richest fern locality in Southern Africa.  There are also 125 orchid species that make it exceptionally rich for this group. The only local Bvumba endemic is a critically endangered epiphytic forest orchid. Six other near-endemic plant taxa occur in the Bvumba, all of which are endemic to the Manica Highlands from Nyanga to Chimanimani,” added Dr Clark.

Low levels of local endemism are likely to be an effect of the Bvumba having limited natural grassland compared to forest. “Second to fynbos, grassland is the most endemic-rich habitat in Southern African mountains. Montane forests are poor in local endemics by comparison, which is contrary to what many would suppose. As in mountains across Southern Africa, invasive species are a major risk to water security, biodiversity conservation and livelihoods. The Bvumba is no exception, with Australian blackwood (Acacia melanoxylon), ginger lily (Hedychium gardnerianum), and bee bush (Vernonanthura polyanthes) being the most problematic species of the 123 naturalised introductions. While the Zimbabwean side of the Bvumba is the best explored, the Mozambican side of Serra Vumba offers exciting opportunities for further botanical research,” he emphasised.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept