Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 July 2020 | Story Thabo Kessah | Photo Supplied
Breathtaking views of the misty Bvumba mountains.

While the Afromontane Research Unit (ARU) will always have a core focus on the sustainable development of the Maloti-Drakensberg (Lesotho-South Africa), the Southern African region is also very important to the unit. The primary reason for this is that Southern African mountains – the most important water-production landscapes in our drought-prone region – have no collective voice for their sustainable management. As such, there is no regional science-policy-action pipeline to secure these mountains for interventions to ensure that they can still produce key ecosystem services under global change. This is in contrast to East Africa where there is a much better-established community of practice for the charismatic African giants such as Mount Kilimanjaro. 

ARU-Southern African collaboration
To this end, the Director of the ARU, Dr Ralph Clark, revealed that the ARU has close links with academics, practitioners, and lay experts in Zimbabwe for the careful documenting of mountain biodiversity in the Manica Highlands. This is a trans-national mountain system critical for water supply to both Zimbabwe and Mozambique. The Bvumba (‘mist’ in Shona) Mountains are situated in the centre of the Manica Highlands. The name Bvumba is derived from the regular mist covering these mountains.

“The Bvumba has a complex socio-political history extending far back, before the arrival of the Portuguese in the 1400s. Despite this history of human occupation, and despite a century of botanical exploration in the 20th century, a comprehensive list of plant species – including endemic species – has never been published for the Bvumba. Such basic lists are essential for foundational knowledge that can drive sustainable development and responsible management of natural resources,” Dr Clark said.

The ARU and partners have collaborated to compile records of the first comprehensive species list for the Bvumba. “This project was done in partnership with the Harare Herbarium, Belgium’s Meise Botanical Gardens, the Flora of Zimbabwe and Mozambique projects, the Biodiversity Foundation for Africa, and the UK’s Royal Botanical Gardens, Kew. It was recently completed with a publication in the journal PhytoKeys.”

Bvumba’s hundreds of species
The Bvumba has a plant species complement of 1 127 native taxa in an area of only 276 square kilometres. “There is remarkable fern and orchid diversity in these mountains, with 137 fern species that is considered to be the richest fern locality in Southern Africa.  There are also 125 orchid species that make it exceptionally rich for this group. The only local Bvumba endemic is a critically endangered epiphytic forest orchid. Six other near-endemic plant taxa occur in the Bvumba, all of which are endemic to the Manica Highlands from Nyanga to Chimanimani,” added Dr Clark.

Low levels of local endemism are likely to be an effect of the Bvumba having limited natural grassland compared to forest. “Second to fynbos, grassland is the most endemic-rich habitat in Southern African mountains. Montane forests are poor in local endemics by comparison, which is contrary to what many would suppose. As in mountains across Southern Africa, invasive species are a major risk to water security, biodiversity conservation and livelihoods. The Bvumba is no exception, with Australian blackwood (Acacia melanoxylon), ginger lily (Hedychium gardnerianum), and bee bush (Vernonanthura polyanthes) being the most problematic species of the 123 naturalised introductions. While the Zimbabwean side of the Bvumba is the best explored, the Mozambican side of Serra Vumba offers exciting opportunities for further botanical research,” he emphasised.

News Archive

Researcher wins prize for her work to reduce environmental pollution
2016-12-26

Description: Josepha Zielke Tags: Josepha Zielke 

Prof Danie Vermeulen, Dean of the Faculty of Natural
and Agricultural Sciences, and Josepha Zielke, a
PhD student at the Institute for Groundwater studies at the
University of the Free State.
Photo: Leonie Bolleurs

Josepha Zielke, a PhD student at the Institute for Groundwater Studies at the University of the Free State (UFS), received the prize for the best student presentation at the International Mine Water Association (IMWA) symposium in Leipzig, Germany, this year. Her paper was titled Fine Ash Leaching in Tailings Dams – An Impact on the Underlying Aquifers?
 
Zielke said: “It is an honour to receive this prize as a student. IMWA is a big association which allows you to establish a network with other scientists, to exchange opinions and ideas and to gain new inspiration for your own work. It was exciting and informative to hear about the research conducted around the world and to meet the researchers themselves.”
 
Born in Germany, Zielke always wanted to study overseas. During an exchange year in Grade 11, she visited South Africa. When she had to make a decision about in which country to complete her studies, South Africa was first choice as she was familiar with the people and the country.
 
Zielke joins leading institute on groundwater research in the country
She completed her BSc Hons in Geology at the Nelson Mandela Metropolitan University. After working for a year in exploration, she decided to focus her studies on water-related problems which  has been a growing issue, not only in South Africa, but in many places around the world. Zielke heard that the UFS Institute for Groundwater Studies was the leading institute on groundwater research in the country, and decided to join the university.
 
After completing her MSc research, An analysis of the geochemical weathering profile within a fine ash tailings dam, Mpumalanga, South Africa, Zielke started the research for her PhD project on groundwater pollution along a fault system in Mpumalanga.
 
Research adding value to the environment by reducing pollution
She explains the focus of her research: “Several production plants and mine waste facilities are located on or near these geological structures which could be a possible cause of ground and surface water pollution. With the aid of geophysical ground surveys (using electromagnetics and electrical resistivity tomography), aquifer and tracer tests, we are trying to determine where the pollution is coming from, how far it has been distributed and to model the potential risks.
 
“This research will add value to the environment by preventing or at least reducing pollution leaking into the environment. Industrial sites always have a negative footprint on the environment but at least we try and contain it by finding the cause of ground and surface water pollution. Thereafter we try and solve the pollution problem or at least mitigate the damage to prevent the spreading of ground and surface water pollution in the area.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept