Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Ehlers was appointed to serve on the National Forensic Oversight and Ethics Board of 10 members for a second term, based on her knowledge in the field of forensic sciences.

Dr Karen Ehlers from the Department of Genetics at the University of the Free State (UFS) was elected as a member of the National Forensic Oversight and Ethics Board (NFOEB) for a second term.

Dr Ehlers has been appointed to the board of 10 members based on her knowledge in the field of forensic sciences. She is currently conducting research focusing on the forensic application of Y-STR markers, the statistical analysis of DNA profiles, and touch DNA.

Making valuable contributions
Her expertise in the field of forensic genetics assists the board – which also handles complaints about alleged violations relating to the abuse of DNA samples and forensic DNA profiles – to oversee the operations of the Forensic Science Laboratory and the National Forensic DNA Database (NFDD). 

“The knowledge I gained from my current research at the UFS has enabled me to make valuable contributions to the board and its recommendations to the Minister of Police,” says Dr Ehlers. 

In her first term as member of the Board – following regular tracking and analysis of reports, the Board noted an increase in the number of outstanding forensic investigative leads – (hits on the National Forensic DNA Database) that were not followed up.

“After we made enquiries, it was determined that the provincial task teams that were to follow up on the leads, were ad hoc structures that lacked the necessary resources. The Board addressed this shortfall by engaging with various stakeholders and helping to establish permanent structures, called Forensic Investigative Units, with dedicated resources – both human and material – to effectively follow up on all forensic DNA investigative leads. The finalised Regulations were published for comment in the Government Gazette on 27 March 2020,” says Dr Ehlers.

Lowering SA crime rate
While serving on this board, she is ensuring that South Africa has a functioning DNA database that contributes to lowering the crime rate in the country. “As a member of the board, I hope to add value to its functioning. I feel that in the future, science will play an even bigger role in crime prevention, detection, and the solving of crimes,” she states.

Dr Ehlers is Programme Director of the Forensic Sciences Programme in the Department of Genetics. She teaches the Crime Scene Management module to second-year students and supervises seven honours, five MSc, and three PhD students. 

Besides her appointment as member of the NFOEB, she values the work she is doing with her students. “The highlight of my career was when my first group of BScHons students in Forensic Genetics graduated and were shortly thereafter appointed by the Forensic Sciences Laboratory as DNA analysts,” she says. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept