Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Thabo Kessah | Photo Tsepo Moeketsi
Dr Ocaya
Dr Richard Ocaya’s research addresses the skills development and transfer millennium goal of many governments globally.

With the Fourth Industrial Revolution becoming a reality, Dr Richard Ocaya’s research is receptive to the fact that Africa and the world need to re-imagine their research. His research focuses on electronic instrumentation design for scientific measurements, computational physics on atomic nano-atomic structures, and semiconducting organic compounds materials built on silicon to realise Schottky devices.

Software developer 
“I develop most of the instrumentation that I apply in my research – both software and hardware,” said Dr Ocaya, a Physics Lecturer and Programme Director: Physics and Chemistry on the UFS Qwaqwa Campus.

“I am active in scientific computing through the computing cluster and software development, mathematical physics for material science modelling, and embedded instrumentation design using microprocessors. I also have deep interest in radio and data telemetry, in which I hold a South African patent issued in 2013. My present international collaborations are with like-minded researchers in similar fields in Saudi Arabia, Turkey, Japan, Egypt, South Korea, and the United States,” he added.

How does his research talk to the real world?
“The driving principle of all areas of my research has always been to deploy cutting-edge research to actual, real-world applications for the immediate betterment of Africans. The areas of my research align closely with the millennium goals of many governments globally, including the Republic of South Africa. These goals pertain to skills development and transfer that position us to better address the challenges of energy, water, and other priorities.”

Dr Ocaya is currently co-promoting a PhD student, having previously supervised one PhD, two MSc, and more than twenty honours students. He is a self-taught electronics and computer programmer, whose curiosity led him to question ‘the voices and music coming from a box; a radio’. “In my quest to satisfy my curiosity, I collected many discarded devices, took them apart, and tried so many circuits, only to have them fail because the theory was lacking. After thousands of failed projects and with me barely thirteen and in lower secondary school, my first ever project actually worked,” he said.

NRF-rating
He is the author of the book Introduction to Control Systems Analysis using Point Symmetries: An application of Lie Symmetries, which is available in all major bookstores such as Amazon, in both print and e-book format. He is a C3 NRF-rated researcher whose work makes a pioneering contribution to the new and growing field of phononics, an independent field of the now established photonics.

“This field will someday lead to improved energy-storage devices and faster processors due to more efficient heat removal from nanodevices,” he concludes.


News Archive

Official opening: UFS earmarks R10-million to support national priorities
2006-02-06

 

The University of the Free State (UFS) is to align key areas of its academic and research efforts with national priorities through the introduction of five strategic clusters which would be funded by seedmoney of R10-million in 2006.

Speaking at the Official Opening of the UFS on Friday (3 February 2006), the Rector and Vice-Chancellor, Prof Frederick Fourie, said the academic and research work that will be done in the five strategic clusters would contribute to the development of Mangaung, the Free State, South Africa and Africa.

 “It makes sense to concentrate the university’s human resources, our infrastructure, financial resources and intellectual expertise to ensure that the UFS makes a contribution to the country and the African continent,” Prof Fourie said.

“Strategic clusters will be organised on the basis that these areas of knowledge could become in the short term the flagships of the UFS, meaning those areas where the university currently has or in the very near future is likely to have some competitive advantage,” Prof Fourie said.

According to Prof Fourie, this strategic-cluster approach will be in line with the approach being designed by the National Research Foundation (NRF) to take national priorities into account and would enhance the quality of scholarship at the UFS.

The five strategic areas in which research and academic investment at the UFS will be clustered are the following:

Enabling technologies / Technology for the future;
Food production, quality and food security for Africa;
Development;
Social transformation;
Water resource and ecosystem management;

“Such strategic clusters are understood not only as research areas but as areas that also encompass strong undergraduate and particularly postgraduate teaching and a potentially solid scientific basis for service learning and community service research,” Prof Fourie said.

Within each of these clusters specific niche areas will be identified. Clusters could focus on one or more aspects of a particular discipline or could involve more than one discipline in researching a particular issue.

He said not all academic work and research being done at the UFS would be clustered in this way. Sufficient resources and support have been put in place for general research excellence in the past five years.

“Some of the spin-offs can have an important impact on industrial development, for example in the chemicals industry and may also create a basis for cooperation with provincial, national and international partners,” he said. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
5 February 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept