Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Thabo Kessah | Photo Tsepo Moeketsi
Dr Ocaya
Dr Richard Ocaya’s research addresses the skills development and transfer millennium goal of many governments globally.

With the Fourth Industrial Revolution becoming a reality, Dr Richard Ocaya’s research is receptive to the fact that Africa and the world need to re-imagine their research. His research focuses on electronic instrumentation design for scientific measurements, computational physics on atomic nano-atomic structures, and semiconducting organic compounds materials built on silicon to realise Schottky devices.

Software developer 
“I develop most of the instrumentation that I apply in my research – both software and hardware,” said Dr Ocaya, a Physics Lecturer and Programme Director: Physics and Chemistry on the UFS Qwaqwa Campus.

“I am active in scientific computing through the computing cluster and software development, mathematical physics for material science modelling, and embedded instrumentation design using microprocessors. I also have deep interest in radio and data telemetry, in which I hold a South African patent issued in 2013. My present international collaborations are with like-minded researchers in similar fields in Saudi Arabia, Turkey, Japan, Egypt, South Korea, and the United States,” he added.

How does his research talk to the real world?
“The driving principle of all areas of my research has always been to deploy cutting-edge research to actual, real-world applications for the immediate betterment of Africans. The areas of my research align closely with the millennium goals of many governments globally, including the Republic of South Africa. These goals pertain to skills development and transfer that position us to better address the challenges of energy, water, and other priorities.”

Dr Ocaya is currently co-promoting a PhD student, having previously supervised one PhD, two MSc, and more than twenty honours students. He is a self-taught electronics and computer programmer, whose curiosity led him to question ‘the voices and music coming from a box; a radio’. “In my quest to satisfy my curiosity, I collected many discarded devices, took them apart, and tried so many circuits, only to have them fail because the theory was lacking. After thousands of failed projects and with me barely thirteen and in lower secondary school, my first ever project actually worked,” he said.

NRF-rating
He is the author of the book Introduction to Control Systems Analysis using Point Symmetries: An application of Lie Symmetries, which is available in all major bookstores such as Amazon, in both print and e-book format. He is a C3 NRF-rated researcher whose work makes a pioneering contribution to the new and growing field of phononics, an independent field of the now established photonics.

“This field will someday lead to improved energy-storage devices and faster processors due to more efficient heat removal from nanodevices,” he concludes.


News Archive

Research on locomotion of giraffes valuable for conservation of this species
2016-08-23

Description: Giraffe research 2016 Tags: Giraffe research 2016

Technology was used in filming the giraffes.
According to research, giraffes will slow
down when a drone is positioned
approximately 20 - 30 m away. When the
drone moves closer, they will revert
to galloping.
Photo: Charl Devenish


The meaning of the Arab term Giraffe Camelopardalis is ‘someone who walks fast’. It is precisely this locomotion of their longnecks that encouraged researchers, Dr Francois Deacon and Dr Chris Basu, to study the animals more closely.

Despite the fact that giraffes are such well-known animals, very little research has been done on the manner in which these graceful animals locomote from one place to the next. There are only two known ways of locomotion: the slower lateral walking and the faster galloping. Most animals use these ways of moving forward. It is unknown why giraffes avoid intermediate-speed trotting.

Research of great value to the industry

Research on the manner in which giraffes locomote from one place to the next will assist the industry in understanding aspects such as their anatomy and function, as well as the energy they utilise in locomoting from one place to another. Information on the latter could help researchers understand where giraffes fit into the ecosystem. This data is of great value for large-scale conservation efforts.

Universities working together to collect data

Dr Basu, a veterinarian at the Royal Veterinary College in the UK, has studied the animals at a zoo park in the United Kingdom. He visited the University of the Free State (UFS) in order to expand his fieldwork on the locomotion of giraffes. This study was done in cooperation with Dr Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research in South Africa and other African countries.

The fieldwork for the research, which was done in the Woodland Hills Wildlife Estate and the Willem Pretorius Nature Reserve, preceded research on the movement and the forces involved in the locomotion of giraffes. Due to the confined fenced area in the zoo park, it was practically impossible to study the animals at speed. “The study of actions ‘faster than walking’ is crucial for gathering data on, inter alia, the frequency, length, and time associated with each step.


Technology such as drones offers unique
opportunities to study animals like giraffes.



Technology used to ensure accuracyTechnology such as drones offers unique opportunities to study animals like giraffes. Apart from the fact that it is possible to get high-quality video material of giraffes – moving at speed – it is also a very controlled device that ensures the accuracy of data.

It is the first time ever that a study has been done on the locomotion of giraffes with this level of detail.
Research on the study will be published in the Journal of Experimental Biology.

The project was approved by the UFS ethics committee.

 

 

 

Previous research articles:

9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept