Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 May 2020 | Story Dr Ralph Clark | Photo Charl Devenish
Afromontane research area in the Eastern Free State.

Africa could be called ‘the continent of mountain archipelagos’ for the unusual fact that most of Africa's mountains are isolated ‘islands’ rather than linear, continuous mountain systems such as those in Asia (e.g. the Himalayas), Europe (e.g. the Alps), and the Americas (e.g. Rockies and Andes). Even in Southern Africa, where we have the linear Great Escarpment (5 000 km long), this system is so old that it has been breached in innumerable places by erosion into a series of independent mountain blocks.

The result of this mountain disconnection is that Africa's mountains display biodiversity patterns more akin to islands than to mountains: rich, exciting, and unique, and full of very localised and interesting species. Likewise, mountain communities have established and evolved unique cultural ways of life and traditions in their particular mountains – isolated from other groups on other mountains. But in some mountains, internecine warfare and tribal conflict caused mountains to become boundaries rather than welcoming places. This was certainly the case during the Mfecane in Southern Africa, ultimately leading to the birth of Lesotho as the ‘Mountain Kingdom’. Colonialism took this to a new level, and – for most of Africa – mountains became international borders between empires, splitting ethnic groups into several nationalities and marginalising large segments of the population in these new countries. This same geopolitical situation continues today, with major implications for the sustainable management of mountain ecosystem services, natural capital, and socio-cultural sustainability in multinational contexts.

The Afromontane Research Unit (ARU) – a continental leader in African mountain research – seeks to explore these socio-ecological complexities in terms of sustainable development, providing research that can help to secure a positive future for the people, biodiversity, and goods and services provided by Africa's mountains. As part of its mission, the ARU is leading the way in encouraging a multidisciplinary community of practice that will drive a science-policy-action interface for Southern African mountains in decades to come. As virtually all of Africa's water comes from its mountains, this is a critical service to a region increasingly at risk from drought and the socio-political implications of rivers and taps running dry. 

Although the Qwaqwa Campus is the home of the ARU, the ARU is welcoming affiliations from across the UFS and beyond. Should you wish to become affiliated to the ARU, please contact the Director, Dr Ralph Clark at ClarkVR@ufs.ac.za. Visit the new ARU's website 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept