Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 May 2020 | Story Dr Ralph Clark | Photo Charl Devenish
Afromontane research area in the Eastern Free State.

Africa could be called ‘the continent of mountain archipelagos’ for the unusual fact that most of Africa's mountains are isolated ‘islands’ rather than linear, continuous mountain systems such as those in Asia (e.g. the Himalayas), Europe (e.g. the Alps), and the Americas (e.g. Rockies and Andes). Even in Southern Africa, where we have the linear Great Escarpment (5 000 km long), this system is so old that it has been breached in innumerable places by erosion into a series of independent mountain blocks.

The result of this mountain disconnection is that Africa's mountains display biodiversity patterns more akin to islands than to mountains: rich, exciting, and unique, and full of very localised and interesting species. Likewise, mountain communities have established and evolved unique cultural ways of life and traditions in their particular mountains – isolated from other groups on other mountains. But in some mountains, internecine warfare and tribal conflict caused mountains to become boundaries rather than welcoming places. This was certainly the case during the Mfecane in Southern Africa, ultimately leading to the birth of Lesotho as the ‘Mountain Kingdom’. Colonialism took this to a new level, and – for most of Africa – mountains became international borders between empires, splitting ethnic groups into several nationalities and marginalising large segments of the population in these new countries. This same geopolitical situation continues today, with major implications for the sustainable management of mountain ecosystem services, natural capital, and socio-cultural sustainability in multinational contexts.

The Afromontane Research Unit (ARU) – a continental leader in African mountain research – seeks to explore these socio-ecological complexities in terms of sustainable development, providing research that can help to secure a positive future for the people, biodiversity, and goods and services provided by Africa's mountains. As part of its mission, the ARU is leading the way in encouraging a multidisciplinary community of practice that will drive a science-policy-action interface for Southern African mountains in decades to come. As virtually all of Africa's water comes from its mountains, this is a critical service to a region increasingly at risk from drought and the socio-political implications of rivers and taps running dry. 

Although the Qwaqwa Campus is the home of the ARU, the ARU is welcoming affiliations from across the UFS and beyond. Should you wish to become affiliated to the ARU, please contact the Director, Dr Ralph Clark at ClarkVR@ufs.ac.za. Visit the new ARU's website 

News Archive

Prof Tredoux turns theories regarding the formation of metals on its head
2013-09-17

 

Prof Marian Tredoux
17 September 2013

The latest research conducted by Prof Marian Tredoux of the Department of Geology, in collaboration with her research assistant Bianca Kennedy and their colleagues in Germany, placed established theories regarding how minerals of the platinum-group of elements are formed, under close scrutiny.

The article on this research of which Prof Tredoux is a co-author – ‘Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts’ – was published in Nature Communications on 6 September 2013. It is an online journal for research of the highest quality in the fields of biological, physical and chemical sciences.

This study found that atoms of platinum and arsenic create nanoclusters, long before the mineral sperrylite can crystallise. Thus, the platinum does not occur as a primary sulphur compound. The research was conducted at the Steinmann Institute of the University of Bonn, Germany, as well as here in Bloemfontein.

Monetary support from Inkaba yeAfrica – a German-South African multidisciplinary and intercultural Earth Science collaborative of the National Research Foundation (NRF) – made this research possible. Studies are now also being conducted on other metals in the precious metal group, specifically palladium, rhodium and ruthenium.

The discovery of the nanoclusters and the combination with arsenic can have far-reaching consequences for the platinum mine industry, if it can be utilised to recover a greater amount of platinum ore and therefore less wastage ending up in mine dumps. This will signify optimal mining of a scarce and valuable metal, one of South Africa’s most important export products.

For Prof Tredoux, the research results also prove thoughts she already had some twenty years ago around the forming of platinum minerals. “Researchers laughed in my face, but the evidence had to wait for the development of technology to prove it.” Young researchers were very excited at recent congresses about the findings, since the new models can bring new insights.

“Chemistry researchers have been talking about platinum element clusters in watery environments for quite a while, but it was thought that these would not appear in magmas (molten rock) due to the high temperatures (>1 000 degrees celsius).”

Prof Tredoux has already delivered lectures at congresses in Scotland, Hungary, Sweden and Italy on this research.

Read the article at: http://www.nature.com/ncomms/2013/130906/ncomms3405/full/ncomms3405.html

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept