Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 May 2020 | Story Dr Ralph Clark | Photo Charl Devenish
Afromontane research area in the Eastern Free State.

Africa could be called ‘the continent of mountain archipelagos’ for the unusual fact that most of Africa's mountains are isolated ‘islands’ rather than linear, continuous mountain systems such as those in Asia (e.g. the Himalayas), Europe (e.g. the Alps), and the Americas (e.g. Rockies and Andes). Even in Southern Africa, where we have the linear Great Escarpment (5 000 km long), this system is so old that it has been breached in innumerable places by erosion into a series of independent mountain blocks.

The result of this mountain disconnection is that Africa's mountains display biodiversity patterns more akin to islands than to mountains: rich, exciting, and unique, and full of very localised and interesting species. Likewise, mountain communities have established and evolved unique cultural ways of life and traditions in their particular mountains – isolated from other groups on other mountains. But in some mountains, internecine warfare and tribal conflict caused mountains to become boundaries rather than welcoming places. This was certainly the case during the Mfecane in Southern Africa, ultimately leading to the birth of Lesotho as the ‘Mountain Kingdom’. Colonialism took this to a new level, and – for most of Africa – mountains became international borders between empires, splitting ethnic groups into several nationalities and marginalising large segments of the population in these new countries. This same geopolitical situation continues today, with major implications for the sustainable management of mountain ecosystem services, natural capital, and socio-cultural sustainability in multinational contexts.

The Afromontane Research Unit (ARU) – a continental leader in African mountain research – seeks to explore these socio-ecological complexities in terms of sustainable development, providing research that can help to secure a positive future for the people, biodiversity, and goods and services provided by Africa's mountains. As part of its mission, the ARU is leading the way in encouraging a multidisciplinary community of practice that will drive a science-policy-action interface for Southern African mountains in decades to come. As virtually all of Africa's water comes from its mountains, this is a critical service to a region increasingly at risk from drought and the socio-political implications of rivers and taps running dry. 

Although the Qwaqwa Campus is the home of the ARU, the ARU is welcoming affiliations from across the UFS and beyond. Should you wish to become affiliated to the ARU, please contact the Director, Dr Ralph Clark at ClarkVR@ufs.ac.za. Visit the new ARU's website 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept