Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 November 2020 | Story Charlene Stanley

Two lecturers in Business Management from the Faculty of Economic and Management Sciences walked away with the 2019/2020 UFS Excellence in Teaching and Learning Awards in the category Innovation in Student Engagement and Learning.

Dr Ekaete Benedict and Mrs Risna Opperman are also both real-life entrepreneurs who own businesses in and around Bloemfontein, using their practical experience from the business world to supplement the theoretical knowledge they impart to their students.

Success recipe

Lecturing the flagship entrepreneurship module in the Department of Business Management, the two lecturers use the graduate attributes theory as a starting point, which states that students should learn and develop certain skills, abilities, knowledge, and attitudes during their studies at university.  

They then integrate and design their module outcomes, academic activities, and assessments to align with these attributes, ensuring that their students develop the skills that will help them to be better prepared for the work environment and self-employment.


Ekaete Benedict_web
Dr Ekaete Benedict. Photo:Supplied

To enhance learning and engagement, they employ blended learning techniques in the form of face-to-face classes supplemented with online activities via Blackboard. 

They also effectively implement experiential learning, inviting real-life entrepreneurs and officials from various small-business development agencies as guest lecturers to communicate and interact with students.
Some of the lessons these industry experts have shared with students are: 
How to protect your business ideas; How to access government funding; How to start your business; and How to market your business.

Aims of Excellence in Teaching and Learning Awards 

The Excellence in Teaching and Learning awards, hosted by the Centre for Teaching and Learning (CTL), recognise academics for their innovative learning and teaching practices within different disciplines, as well as the advancement of the scholarship of teaching at the institution.Among its aims are to share best practices, innovative ideas, and research findings in learning and teaching.

Risna Opperman web
Risna Opperman. Photo:Supplied

Value of Entrepreneurship

Both winners are passionately advocating the critical need for entrepreneurship education and training in the South African context.
“In the light of South Africa’s high unemployment rate (over 30%), plus the fact that we have the highest youth unemployment rate in the world (58.2%), there is a big demand for meaningful engagement of young people in productive activities – hence the need for entrepreneurship,” says Benedict.
“As entrepreneurship lecturers, our focus is not just on graduating future employees for the workforce, but to create and develop future employers who can contribute to the economic development of the country,” emphasises Opperman.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept