Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 November 2020 | Story Thabo Kessah | Photo Thabo Kessah
Prof Pearl Sithole acknowledged the role played by the Afromontane Research Unit in securing mountain-to-mountain research funding from the US Embassy and Consulates in SA.

“This launch is an opportunity to reflect on the strategic significance of the partnership between our two universities and the long-standing relationship that academics at the two institutions have enjoyed.” 

These were the words of appreciation from the University of the Free State Vice-Rector: Research, Innovation and Internationalisation, Prof Corli Witthuhn, during the virtual launch of the Mountain-to-Mountain collaboration project between the University of the Free State and the Appalachian State University in the United States held on 10 November 2020. The R8 million project is funded by the US Embassy and Consulates in South Africa and will run over two academic years.

Prof Witthuhn also stated that the project would further strengthen the UFS strategy for internationalisation. “This collaboration has grown organically in the last decade to become one of the UFS flagships in international collaborations. With the support of this grant from the US Embassy and Consulates in South Africa, this long-standing and sustainable collaboration will be further strengthened,” she added.

New master’s programmes

In providing context to the Qwaqwa Campus’ research footprint, Campus Vice-Principal: Academic and Research, Prof Pearl Sithole, acknowledged the role played by the Afromontane Research Unit (ARU) under the leadership of its Director, Dr Ralph Clark, as well as all the faculties.

“In the Humanities, a lot is coming regarding the socio-ecosystems of the mountains. And in Education and Economic and Management Sciences, the scholarship of teaching and learning is promoted through blended skills, especially during this time of the pandemic. In the Natural and Agricultural Sciences, climate monitoring is one of the projects that has brought vibrancy to our campus,” she said.

Appalachian State University’s Associate Vice-Chancellor for International Education and Development, Prof Jesse Lutabingwa, mentioned that the collaboration would, among others, develop and offer a multi-disciplinary master’s degree in Mountain Studies on the Qwaqwa Campus, which will initially enrol seven to ten students. “In the subsequent years, we plan to increase this number to 15-20 students. We will also develop and offer a Community Development master’s degree with 10-12 students and up to 25 in subsequent years.”

Black women academics

Prof Lutabingwa, who is also the Project Director, revealed that doctoral students who are currently part of the University Staff Doctoral Project (USDP), will conduct at least three research projects focusing on social entrepreneurship, substance abuse, and rural transport monitoring in the Maloti-Drakensberg Mountains. “Also key to this collaboration is the leadership mentorship programme for black women academics who will at the end of the project produce three to five research papers,” Prof Lutabingwa added.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept