Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Prof John Mubangizi | Photo Sonia du Toit
Prof John C Mubangizi is Dean: Faculty of Law, University of the Free State.

South Africans are sick and tired of corruption. They are angry, frustrated and despondent. And they have every reason to be. South Africa has many problems: crime, unemployment, poverty, gender-based violence, inequality, low economic growth and now – in common with many other countries – COVID-19. The list goes on and on. What makes corruption the biggest threat among all these is that it cuts across all of them and impacts on their gravity in different ways. 

The South African Constitution envisages a society based on democratic values, social justice and fundamental human rights. The way things are going, that society is never likely to happen. That is because corruption has been, and continues to be, the greatest threat to any possibility of realising that constitutional dream. In South Africa, like everywhere else where corruption is rampant, it occurs both in the public and private sectors, where it affects democracy and human rights by deteriorating institutions and diminishing public trust in government. It impairs the ability of government to fulfil its obligations and ensure accountability in the delivery of economic and social services like healthcare, education, clean water, housing, and social security. This is because corruption diverts funds into private pockets – which impedes delivery of services – thereby perpetuating poverty, inequality, injustice and unfairness. The problem is aggravated when government is the main culprit. “Government” here, of course, refers to the dictionary meaning of the term, namely, “the group of people with the authority to govern a country or state”.

Corruption existed in ancient Egypt, China and Greece

There are those who argue that corruption is as old as mankind and, therefore, it is here to stay. Indeed, corruption is known to have existed in ancient Egypt, ancient China and ancient Greece. In Robert Bolt’s 16th Century play A Man for All Seasons, Richard Rich’s opening remark is “But every man has his price.” In the 1836 play The Government Inspector, Nikolai Gogol cleverly satirised the human greed, stupidity and extensive political corruption in Imperial Russia at the time. And in a recent article in The Conversation (28 August 2020), Steven Friedman wonders why South Africans express shock at corruption when “it is perhaps the country’s oldest tradition.” He locates the advent of corruption in South Africa at the arrival of Jan van Riebeeck in 1652, through to the ensuing colonialism and apartheid. He argues that in reality, “corruption has been a constant feature of South African political life for much of the past 350 years. It is deeply embedded and it will take a concerted effort, over years, not days, to defeat it”. 

Agreed, but does it have to be that way? At the time of Jan van Riebeeck and during the 350 years of colonialism and apartheid, we did not have the legal framework that we have now. Here is a brief overview of that framework.

Read full article here

Opinion article by Professor John C Mubangizi, Dean: Faculty of Law, University of the Free State


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept