Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Funding of R8.7million for skills development in manufacturing and teacher training signed over to UFS
2017-06-19

Description: MerSETA funding Tags: MerSETA funding



The MerSETA (Skills and Training Authority for Manufacturing, Engineering and Related Industries) signed a Memorandum of Agreement (MOA) with the University of the Free State (UFS) for a grant of approximately R8.7million on 14 June 2017, which will be disbursed over a three-year period. 

UFS seeks to bridge the skills gap
As a response to the need for skills development in the manufacturing, engineering and related industries sector, and as an institution of higher learning optimally placed to serve the population of central South Africa, the UFS proposed a partnership with MerSETA to address challenges in the sector. The interventions that MerSETA will fund include training for 600 vocational teachers, research and development of a green building mechanical index, in-service training for 60 IT Teachers and microbotics classes for 100 students.

The CEO of MerSETA, and UFS alumnus Dr Raymond Patel, said the funding for rare skills such as in science and engineering are of great importance for the country. The ability to train teachers and to upskill them will yield great results for the economy as a whole. Rector and Vice-Chancellor Prof Francis Petersen said the UFS partnership with SETAs and with MerSETA in particular should be mutually beneficial, and went a long way in integrating first-generation university students to be better-prepared for university studies.

Collaboration and support key within university departments
The delegates visited the Departments of Education and Engineering Sciences on the Bloemfontein Campus, where they met project leaders Louis Lagrange from the Faculty of Natural and Agricultural Sciences, Dr Nixon Teis, Faculty of Education, and Pat Lamusse, Institutional Advancement. Present at the signing ceremony were members of the Rectorate, the Acting Dean of the faculty of Education, Prof Loyiso Jita, and Dean of the Faculty of Natural and Agricultural Sciences, Prof Danie Vermeulen, as well as researchers who will be working on the green building mechanical use index and other MerSETA representatives.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept