Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Leonie Bolleurs | Photo Supplied
Adriaan van der Walt
Although several international studies have used temperature metrics to statistically classify their seasonal divisions, a study in which Adriaan van der Walt was involved, would be the first known publication in a South African context using temperature as classification metric.

Gone are the days when we as South Africans would experience a three-month spring season, easing into summer, and then cooling off for three months before we hit winter.

Adriaan van der Walt, Lecturer in the Department of Geography at the University of the Free State (UFS), focuses his research on biometeorology (a specialist discipline exploring the role and climate change in physical and human environments) as well as climatology and geographic information systems.

He recently published an article: ‘Statistical classification of South African seasonal divisions on the basis of daily temperature data’ in the South African Journal of Science.

In this study, which Van der Walt undertook with Jennifer Fitchett, a colleague from the University of the Witwatersrand, data on daily maximum and minimum temperatures was collected from 35 meteorological stations of the South African Weather Service, covering the period between 1980 and 2015.

They went to great lengths to ensure that they had a complete set of data before presenting it to demonstrate seasonal brackets.

First for South Africa

Their statistical seasonal brackets indicate that South Africans now experience longer summers (from October to March), autumn in April and May, winter from June to August, and spring in September.

Although considerable work has been done using rainfall to determine seasonality in Southern Africa, Van der Walt believes that these methods did not work well as there are too many inconsistencies in this approach, as identified by Roffe et al. (2019, South African Geographical Journal). To make matters more complicated – as a semi-arid region, and with desert conditions along the west coast – some regions do not have enough rainfall to use as a classifier.

Temperature, on the other hand, worked well in this study. “Temperature, by contrast, is a continuous variable, and in Southern Africa has sufficient seasonal variation to allow for successful classification,” says Van der Walt.

He continues: “Although several international studies used temperature metrics to statistically classify their seasonal divisions, this study would be the first known publication in a South African context using temperature as classification metric.”

Van der Walt says what we understand as seasons largely relates to phenology – the appearance of blossoms in spring, the colouration and fall of leaves in autumn, and the migration of birds as a few examples. “These phenological shifts are more sensitive to temperature than other climatic variables.”

Seasonal brackets

According to Van der Walt, they believe that a clearly defined and communicated method should be used in defining seasons, rather than just assigning months to seasons.

“One of the most important arguments of our work is that one needs to critically consider breaks in seasons, rather than arbitrarily placing months into seasons, and so we welcome any alternate approaches,” he says.

A number of sectors apply the temperature-based division to their benefit. “For example, in the tourism sector it is becoming increasingly important to align advertising with the season most climatically suitable for tourism,” says Van der Walt.

Temperature-based division is also used to develop adaptive strategies to monitor seasonal changes in temperature under climate change. However, Van der Walt points out that each sector will have its own way of defining seasons. “Seasonal boundaries should nevertheless be clearly communicated with the logic behind them,” he says.

News Archive

Study shows that even cheating monkeys alter their behaviour to avoid detection and punishment
2013-03-12

 

Dr Le Roux sharing a moment with the geladas (Theropithecus gelada).
Photo: Supplied
11 March 2013

A recent article headed by Dr Aliza le Roux from the University of the Free State Qwaqwa Campus’ Department of Zoology and Entomology, asserts that cheating and deception is not only a human phenomenon - it is also found in non-human animals.

“Our specific study investigated cheating and punishment in geladas. While human beings are known to deceive one another, and punish cheaters that get caught, it is actually very rare to find proof of this kind of behaviour in non-human animals,” said Dr Le Roux.

“We don't know if this is because humans are uniquely deceitful, or if it is just that animals deal with cheating differently. Our study was therefore the first to demonstrate that gelada males and females try to deceive their partners when they are cheating on them. This means they try to hide their unfaithful behaviour.” This is therefore the first investigation to document tactical deception in primates living in a natural environment.

“We also showed that the cuckolded males then punish the cheaters, but could not determine if the punishment actually caused cheaters to stop cheating,” said Dr Le Roux.

This on-going and long-term study continues to observe the population of wild geladas in the Simien Mountains National Park in Ethiopia. The study investigates primate hormones, cognition, genetics, social behaviour and conservation, and is done in collaboration with the Universities of Michigan and Pennsylvania.

The full version of the article can be accessed on (http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2468.html).


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept