Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Leonie Bolleurs | Photo Supplied
Adriaan van der Walt
Although several international studies have used temperature metrics to statistically classify their seasonal divisions, a study in which Adriaan van der Walt was involved, would be the first known publication in a South African context using temperature as classification metric.

Gone are the days when we as South Africans would experience a three-month spring season, easing into summer, and then cooling off for three months before we hit winter.

Adriaan van der Walt, Lecturer in the Department of Geography at the University of the Free State (UFS), focuses his research on biometeorology (a specialist discipline exploring the role and climate change in physical and human environments) as well as climatology and geographic information systems.

He recently published an article: ‘Statistical classification of South African seasonal divisions on the basis of daily temperature data’ in the South African Journal of Science.

In this study, which Van der Walt undertook with Jennifer Fitchett, a colleague from the University of the Witwatersrand, data on daily maximum and minimum temperatures was collected from 35 meteorological stations of the South African Weather Service, covering the period between 1980 and 2015.

They went to great lengths to ensure that they had a complete set of data before presenting it to demonstrate seasonal brackets.

First for South Africa

Their statistical seasonal brackets indicate that South Africans now experience longer summers (from October to March), autumn in April and May, winter from June to August, and spring in September.

Although considerable work has been done using rainfall to determine seasonality in Southern Africa, Van der Walt believes that these methods did not work well as there are too many inconsistencies in this approach, as identified by Roffe et al. (2019, South African Geographical Journal). To make matters more complicated – as a semi-arid region, and with desert conditions along the west coast – some regions do not have enough rainfall to use as a classifier.

Temperature, on the other hand, worked well in this study. “Temperature, by contrast, is a continuous variable, and in Southern Africa has sufficient seasonal variation to allow for successful classification,” says Van der Walt.

He continues: “Although several international studies used temperature metrics to statistically classify their seasonal divisions, this study would be the first known publication in a South African context using temperature as classification metric.”

Van der Walt says what we understand as seasons largely relates to phenology – the appearance of blossoms in spring, the colouration and fall of leaves in autumn, and the migration of birds as a few examples. “These phenological shifts are more sensitive to temperature than other climatic variables.”

Seasonal brackets

According to Van der Walt, they believe that a clearly defined and communicated method should be used in defining seasons, rather than just assigning months to seasons.

“One of the most important arguments of our work is that one needs to critically consider breaks in seasons, rather than arbitrarily placing months into seasons, and so we welcome any alternate approaches,” he says.

A number of sectors apply the temperature-based division to their benefit. “For example, in the tourism sector it is becoming increasingly important to align advertising with the season most climatically suitable for tourism,” says Van der Walt.

Temperature-based division is also used to develop adaptive strategies to monitor seasonal changes in temperature under climate change. However, Van der Walt points out that each sector will have its own way of defining seasons. “Seasonal boundaries should nevertheless be clearly communicated with the logic behind them,” he says.

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept