Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2020 | Story Nonsindiso Qwabe | Photo Supplied
Leah Molatseli is the founder of Lenoma Legal, a legal technology company which specialise in commercial and labour matters for small and medium businesses.

Legal technology and innovation specialist and member of the University of the Free State Council, Leah Molatseli, tackled the intersection of law and technology in her new book, titled #LegalTech Startups and Innovation

As technology continues to revolutionise how traditional industries function, legal tech is no longer a foreign concept in the country’s current legal market. The technological boom that has occurred over the past few decades has reshaped many industries. Molatseli said her book is a bridge in the knowledge gap; it is a comprehensive guide for using new technologies in order to provide legal services that are not restricted by physical barriers. 

Molatseli said in her career as a lawyer, she has witnessed first-hand the need for ordinary citizens to gain greater access to justice.  This has led her to adopt new technology that works for the client by cutting costs, improving efficiency, and reaching people more effectively. In 2017, she co-founded Lenoma Legal, a legal tech start-up that provides legal services virtually. 

“While a digital divide still exists, mobile penetration has increased drastically in the past few years, making it much easier to provide legal help from anywhere. My hope is that this book will open up different avenues for law firms, entrepreneurial people who want to innovate within the legal space, and Law students to start thinking differently about how they can shape their careers.”

Technology pivotal to legal industry

Molatseli said she decided at the beginning of 2020 to put the knowledge she gained into a book. When the COVID-19 pandemic hit South Africa, it quickly became apparent that the legal profession had to seek alternative ways to carry out its functions, and the pivotal role that technology has played made the book a timely release. 

“The pandemic has cemented the need for access from anywhere in the world. For me, it’s about access. I believe that access to legal services is a basic human right, and legal tech and innovation plays a huge role in making that happen,” she said. 

Molatseli said #Legaltech Startups and Innovation is a guide that will equip other forward-thinking practitioners to do exactly the same. She said as technology continued to advance, it is becoming easier for anyone within the legal world to create and build solutions.

Book shines light on new avenues in law

“For many years we’ve been made to think that legal careers are linear; get your degree and go work in a law firm, but it’s no longer like that. There are so many avenues open to people within the law industry, and the moment you become aware of this, you can take charge of your career. If we can integrate this type of thinking, the opportunities are endless. This book can drastically change how we do things and how we approach law.”

The book is available for ordering from: https://juta.co.za/catalogue/legaltech-startups-and-innovation_28319/. If you would like to get more information on the book, follow Leah Molatseli on Twitter at @leahmolatseli. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept