Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2020 | Story Nonsindiso Qwabe | Photo Supplied
Leah Molatseli is the founder of Lenoma Legal, a legal technology company which specialise in commercial and labour matters for small and medium businesses.

Legal technology and innovation specialist and member of the University of the Free State Council, Leah Molatseli, tackled the intersection of law and technology in her new book, titled #LegalTech Startups and Innovation

As technology continues to revolutionise how traditional industries function, legal tech is no longer a foreign concept in the country’s current legal market. The technological boom that has occurred over the past few decades has reshaped many industries. Molatseli said her book is a bridge in the knowledge gap; it is a comprehensive guide for using new technologies in order to provide legal services that are not restricted by physical barriers. 

Molatseli said in her career as a lawyer, she has witnessed first-hand the need for ordinary citizens to gain greater access to justice.  This has led her to adopt new technology that works for the client by cutting costs, improving efficiency, and reaching people more effectively. In 2017, she co-founded Lenoma Legal, a legal tech start-up that provides legal services virtually. 

“While a digital divide still exists, mobile penetration has increased drastically in the past few years, making it much easier to provide legal help from anywhere. My hope is that this book will open up different avenues for law firms, entrepreneurial people who want to innovate within the legal space, and Law students to start thinking differently about how they can shape their careers.”

Technology pivotal to legal industry

Molatseli said she decided at the beginning of 2020 to put the knowledge she gained into a book. When the COVID-19 pandemic hit South Africa, it quickly became apparent that the legal profession had to seek alternative ways to carry out its functions, and the pivotal role that technology has played made the book a timely release. 

“The pandemic has cemented the need for access from anywhere in the world. For me, it’s about access. I believe that access to legal services is a basic human right, and legal tech and innovation plays a huge role in making that happen,” she said. 

Molatseli said #Legaltech Startups and Innovation is a guide that will equip other forward-thinking practitioners to do exactly the same. She said as technology continued to advance, it is becoming easier for anyone within the legal world to create and build solutions.

Book shines light on new avenues in law

“For many years we’ve been made to think that legal careers are linear; get your degree and go work in a law firm, but it’s no longer like that. There are so many avenues open to people within the law industry, and the moment you become aware of this, you can take charge of your career. If we can integrate this type of thinking, the opportunities are endless. This book can drastically change how we do things and how we approach law.”

The book is available for ordering from: https://juta.co.za/catalogue/legaltech-startups-and-innovation_28319/. If you would like to get more information on the book, follow Leah Molatseli on Twitter at @leahmolatseli. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept