Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2020 | Story Nonsindiso Qwabe | Photo Supplied
Leah Molatseli is the founder of Lenoma Legal, a legal technology company which specialise in commercial and labour matters for small and medium businesses.

Legal technology and innovation specialist and member of the University of the Free State Council, Leah Molatseli, tackled the intersection of law and technology in her new book, titled #LegalTech Startups and Innovation

As technology continues to revolutionise how traditional industries function, legal tech is no longer a foreign concept in the country’s current legal market. The technological boom that has occurred over the past few decades has reshaped many industries. Molatseli said her book is a bridge in the knowledge gap; it is a comprehensive guide for using new technologies in order to provide legal services that are not restricted by physical barriers. 

Molatseli said in her career as a lawyer, she has witnessed first-hand the need for ordinary citizens to gain greater access to justice.  This has led her to adopt new technology that works for the client by cutting costs, improving efficiency, and reaching people more effectively. In 2017, she co-founded Lenoma Legal, a legal tech start-up that provides legal services virtually. 

“While a digital divide still exists, mobile penetration has increased drastically in the past few years, making it much easier to provide legal help from anywhere. My hope is that this book will open up different avenues for law firms, entrepreneurial people who want to innovate within the legal space, and Law students to start thinking differently about how they can shape their careers.”

Technology pivotal to legal industry

Molatseli said she decided at the beginning of 2020 to put the knowledge she gained into a book. When the COVID-19 pandemic hit South Africa, it quickly became apparent that the legal profession had to seek alternative ways to carry out its functions, and the pivotal role that technology has played made the book a timely release. 

“The pandemic has cemented the need for access from anywhere in the world. For me, it’s about access. I believe that access to legal services is a basic human right, and legal tech and innovation plays a huge role in making that happen,” she said. 

Molatseli said #Legaltech Startups and Innovation is a guide that will equip other forward-thinking practitioners to do exactly the same. She said as technology continued to advance, it is becoming easier for anyone within the legal world to create and build solutions.

Book shines light on new avenues in law

“For many years we’ve been made to think that legal careers are linear; get your degree and go work in a law firm, but it’s no longer like that. There are so many avenues open to people within the law industry, and the moment you become aware of this, you can take charge of your career. If we can integrate this type of thinking, the opportunities are endless. This book can drastically change how we do things and how we approach law.”

The book is available for ordering from: https://juta.co.za/catalogue/legaltech-startups-and-innovation_28319/. If you would like to get more information on the book, follow Leah Molatseli on Twitter at @leahmolatseli. 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept