Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2020 | Story Andre Damons | Photo Supplied
Dr Satyajit Tripathy
Dr Satyajit Tripathy, a postdoctoral fellow from the Department of Pharmacology and Physiology, won the medal for the best oral performance at a UNESCO/UNITWIN network web seminar attended by more than 300 people from various institutions around the world.

A postdoctoral fellow in Pharmacology at the University of the Free State (UFS) was awarded a medal for the best oral e-poster presentation (Postdoctoral Fellow category) at a UNESCO/UNITWIN Network web seminar.

The two-day webinar with the theme Current concepts of Environmental Pollution by Electromagnetic field and Coronavirus was held in early August and was attended by more than 300 delegates from approximately 30 institutions from different countries.

Dr Satyajit Tripathy from the Department of Pharmacology won the medal for his outstanding research presentation on Employment of old options to control novel Coronavirus: Pros and Cons (authors: Barsha Dassarma, Satyajit Tripathy, MG Matsabisa). His presentations looked at immunotherapeutic techniques, such as the convalescent plasma (CP) therapy and possible diverse modes of action of the antimalarial drug hydroxychloroquine (HCQ) against COVID-19 infection.

The award will serve as motivation

He was excited to hear that he had won the award, says Dr Tripathy.

“I never thought I would win, but I tried my best. On the topic of possible modes of action of HCQ against the viral infection, we have published in the ‘International Journal of Antimicrobial Agents’ (S Tripathy, B Dassarma, H Chabalala, S Roy, and MG Matsabisa / International Journal of Antimicrobial Agents 56 (2020) 106028). All the authors are grateful to Prof Glen Taylor, Research Director at the UFS, and the UFS Department of Pharmacology, for giving us the opportunity,” says Dr Tripathy. 
According to him, receiving this award is a validation and boost to his confidence. “I am thankful to Prof Motlalepula Matsabisa (supervisor) and Dr Barsha Dassarma (my wife), who are also contributing actively to this project. Moreover, the award is a symbol of respect for my work and the acceptance of a greater responsibility to keep the UFS flag flying high.”
Dr Tripathy goes further to say that it will motivate him to work on HCQ or nano-HCQ delivery research on Coronaviruses. In his doctoral study, it has been found that chitosan-based nanochloroquine delivery increases antimalarial efficacy against rodent parasites. Against the Coronavirus, this type of approach might work to reduce the dose and increase the efficacy of HCQ, explains Dr Tripathy. 

Immediate saviour from the pandemic

In his presentation, Dr Tripathy argues that while the world is finding expedited approvals for the development of vaccines that are time-dependent, preventative, and possibly not a cure, physicians are considering the convalescent plasma (CP) therapy as an immediate saviour, and the antimalarial drug hydroxychloroquine (HCQ) as therapeutic options against COVID-19 infection, after assessing results from larger prospective, randomised, dose-determining controlled clinical trials. 
He concludes that, “Overall, in this situation of unavailability of specific medication, the CP therapy and HCQ treatment might act as an immediate saviour for society from the pandemic.”

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept