Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 September 2020

MESSAGE FROM THE RECTOR AND VICE-CHANCELLOR: UPDATE ON DEVELOPMENTS AT THE UFS

I hope you are well, healthy, and safe. I have experienced an overwhelming sense of commitment from staff and students across the university to make a success of the 2020 academic year. Thank you for working together towards this common goal.

Currently, we have a significant number of students back on the campuses in line with the university’s reintegration plan, and others are continuing with online learning. On 16 September 2020, President Cyril Ramaphosa announced that the country will move to alert Level 1 as from midnight on Sunday 20 September 2020. During Level 1 of the national lockdown, we will continue to return staff and students in a structured and phased approach according to the university’s reintegration plan. However, we are still unable to return all our students to the campuses, as we have to adhere to physical distancing and hygiene measures and also have to take into account the capacity of the lecture venues on the campuses, but most specifically the residences.

Please note that you will be informed by your faculty if you are required to return to campus during Level 1. If you have NOT been contacted, you will be supported through remote multimodal teaching, learning, and assessment until you are informed by your faculty that you can return to campus.

Data shows that most of you have adapted well to the blended learning modes – I find it admirable and inspiring. Rest assured that your lecturers are continuing to work hard to deliver a quality teaching and learning experience. Please use the #LearnOn material as a guide to plan for the second semester and engage with your lecturers on academic problems or consult with your faculty structures to find suitable solutions.

The university is aware that international students who have been residing outside of the country during Levels 5 and 4, may return to campus during Level 1; we will communicate with these students in due course.

I am confident that you are focused and committed to completing the second semester. We have prepared a safe environment for students who are returning to campus during Level 1. Sufficient hygiene measures are in place, as well as re-configurations to ensure physical distancing. The wearing of masks, physical distancing, and hand sanitising remain compulsory on all the campuses.

During Level 1, campus access will remain restricted – only those with campus access permits will be allowed to enter. Space in our residences remains limited due to physical distancing and residence students must comply with the protocols in their respective residences. See the Return to campus of students_Level 1 of national lockdown document for more information.

Although our country will be on Level 1 of the national lockdown, it is still extremely important that you remain vigilant and take ownership of your health and look out for the health of those around you. Ultimately, your health is your responsibility. Please do not let your guard down and adhere to the protocols and regulations – for your own safety, and for the safety of others.

It is also important to keep your mental health in check – make use of the #WellbeingWarriors campaign from our Department of Student Counselling and Development, which is aimed at encouraging health and well-being among students. Visit the COVID-19 website for comprehensive information and updates.

Although the infection rate in our country is decreasing, remember that the COVID-19 pandemic is still testing every aspect of society; we must not underestimate the impact that the pandemic still has on local and global communities. Take care of yourselves and those around you and comply with the national guidelines and regulations.

I wish you all the best with your studies.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept