Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 September 2020

MESSAGE FROM THE RECTOR AND VICE-CHANCELLOR: UPDATE ON DEVELOPMENTS AT THE UFS

I hope you are well, healthy, and safe. I have experienced an overwhelming sense of commitment from staff and students across the university to make a success of the 2020 academic year. Thank you for working together towards this common goal.

Currently, we have a significant number of students back on the campuses in line with the university’s reintegration plan, and others are continuing with online learning. On 16 September 2020, President Cyril Ramaphosa announced that the country will move to alert Level 1 as from midnight on Sunday 20 September 2020. During Level 1 of the national lockdown, we will continue to return staff and students in a structured and phased approach according to the university’s reintegration plan. However, we are still unable to return all our students to the campuses, as we have to adhere to physical distancing and hygiene measures and also have to take into account the capacity of the lecture venues on the campuses, but most specifically the residences.

Please note that you will be informed by your faculty if you are required to return to campus during Level 1. If you have NOT been contacted, you will be supported through remote multimodal teaching, learning, and assessment until you are informed by your faculty that you can return to campus.

Data shows that most of you have adapted well to the blended learning modes – I find it admirable and inspiring. Rest assured that your lecturers are continuing to work hard to deliver a quality teaching and learning experience. Please use the #LearnOn material as a guide to plan for the second semester and engage with your lecturers on academic problems or consult with your faculty structures to find suitable solutions.

The university is aware that international students who have been residing outside of the country during Levels 5 and 4, may return to campus during Level 1; we will communicate with these students in due course.

I am confident that you are focused and committed to completing the second semester. We have prepared a safe environment for students who are returning to campus during Level 1. Sufficient hygiene measures are in place, as well as re-configurations to ensure physical distancing. The wearing of masks, physical distancing, and hand sanitising remain compulsory on all the campuses.

During Level 1, campus access will remain restricted – only those with campus access permits will be allowed to enter. Space in our residences remains limited due to physical distancing and residence students must comply with the protocols in their respective residences. See the Return to campus of students_Level 1 of national lockdown document for more information.

Although our country will be on Level 1 of the national lockdown, it is still extremely important that you remain vigilant and take ownership of your health and look out for the health of those around you. Ultimately, your health is your responsibility. Please do not let your guard down and adhere to the protocols and regulations – for your own safety, and for the safety of others.

It is also important to keep your mental health in check – make use of the #WellbeingWarriors campaign from our Department of Student Counselling and Development, which is aimed at encouraging health and well-being among students. Visit the COVID-19 website for comprehensive information and updates.

Although the infection rate in our country is decreasing, remember that the COVID-19 pandemic is still testing every aspect of society; we must not underestimate the impact that the pandemic still has on local and global communities. Take care of yourselves and those around you and comply with the national guidelines and regulations.

I wish you all the best with your studies.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept