Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2021 | Story Financial Aid

Dear Student

Please take note that the NSFAS appeals process is now open.

FIRST TIME AND NEW APPLICANTS

First time1 and new applicants2 for NSFAS funding for 2021 whose applications were rejected by NSFAS must submit their appeal electronically on the MyNSFAS portal. Financial Aid offices may not accept manual forms for this group of students and may not submit manual appeals for this group to NSFAS. You will be able to track your status on the MyNSFAS portal.

SENIOR RETURNING/CONTINUING STUDENTS

Please see appeal form attached.

The following process is ONLY applicable to NSFAS returning/continuing students and exclude first time
and new applicants for NSFAS funding in 2021.

The following documents must be submitted from your “ufs4life” email address for your appeal to be
considered:
  • 1. Completed and signed appeal form attached herewith.
  • 2. Ensure that the relevant box indicating the reason for your appeal is checked.
  • 3. Signed motivation
  • 4. Supporting documents (e.g. Medical certificates, death certificate etc.) Your appeal can
  • unfortunately not be considered in the absence of documentation in support of your reason and
  • motivation for the appeal.
Please note that NSFAS confirmed that you cannot appeal if you exceeded the N+ period. You can only
submit an appeal for one of the reasons provided on the appeal form.

Please submit the abovementioned required documents as one single combined attachment in legible 
PDF format to your campus specific e-mail address below:
Bloemfontein Campus – NSFASAppealsBfn@ufs.ac.za
Qwaqwa Campus – NSFASAppealsQQ@ufs.ac.za
The closing date for submission of appeals is 30 April 2021 at 16:00 and no appeals will be accepted after
this date.

Issued by

Financial Aid

 

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept