Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 August 2021 | Story Lacea Loader | Photo Supplied
Dr Millard Arnold, UFS Council Member and Senior Consultant at Bowman Gilfillan.

Dr Millard Arnold, Council Member of the University of the Free State (UFS) and Senior Consultant at Bowman Gilfillan, recently contributed to a noteworthy book on leadership and a book on responsive universities. His experience as a journalist and later as a seasoned leader and keynote speaker positioned him well to participate in the book: The Book Every Upcoming, New, and Seasoned Leader Needs to Read – Lessons From Leading Business Minds and Thought Leaders. 

From surviving to thriving

Incorporating collective leadership wisdom for both the leaders of tomorrow and the leaders of today, the book is full of lessons, insights, pep talks, advice, and direction for building your own style and approach to great leadership, and not to shy away from the ecstasy (and sometimes agony) of becoming a significant leader. Packed with the contributions of 48 authors, the book is the antidote to the lack of mentorship in the field. Authors include Brand Pretorius, Edwin Cameron, Marnus Broodryk, Nyimpini Mabunda, and Roze Phillips – to name a few. 

Giving problems to solutions

Dr Arnold’s contribution focuses on fishing out the valuable leadership principles from the sea of leaderships that we are drowning in. “I have found myself in positions of leadership and have had to develop a number of thoughts on leadership which have helped guide me in determining how best to lead,” he writes. This guided him to discover the true essence of leadership, which is problem solving. He asserts that “if there are no difficulties to overcome, no problems to resolve, the leadership is unnecessary”. Leadership has its genesis in problems, he believes. 

Effective leaders make things happen

Among the profound insights that Dr Arnold shares, he highlights the notion that great leaders must understand the problem and have the vision to see the solution. Inevitably, this necessitates the leader to take some risks and to persuade others to get on board. This is only possible if the leader has integrity and ultimately deliver on the promise made. He advises leaders to “ask good questions, listen to the answers, assess the reality, be empathic, and spend a great deal of time on self-reflection”.

Universities must remain relevant 

Dr Arnold also contributed a chapter titled, Poverty, Inequity and Decolonisation: Are Business Schools Responsive to the Challenge? in a book by Chris Brink, The Responsive University and the Crisis in South Africa. The book brings together contributions on the issue of responsiveness from several international university leaders. Dr Arnold’s chapter presents an overview of the impact of colonialism and capitalism on the African mind set and stresses how different South African business schools have responded to the task of being responsive to the challenges confronting the country. It argues that, if carefully managed, business schools can, and should be, vehicles to promote and facilitate positive and constructive change.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept