Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Leonie Bolleurs | Photo istock
The Faculty of Natural and Agricultural Sciences has reorganised three of its departments, and as a result the Departments of Animal Science, Microbiology and Biochemistry, and Sustainable Food Systems and Development have been established.

In a continuous effort to inspire excellence and transform lives, the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has reorganised three of its departments. The entities that were affected include what was known as the Department of Consumer Science; the Department of Animal, Wildlife and Grassland Sciences; and the Division of Food Science.

The Department of Animal, Wildlife and Grassland Sciences has changed to Animal Science, while the Department of Consumer Science and the Centre for Sustainable Agriculture, Rural Development, and Extension (CENSARDE) merged to become the Department of Sustainable Food Systems and Development.

Sustainable food systems

Both the Department of Consumer Science and CENSARDE are major contributors to studies on food systems. According to Prof Johan van Niekerk, Head of the new Department of Sustainable Food Systems and Development, the two academic entities create a natural link that provides the potential for training, development, and research from a food systems perspective to benefit the local and national agri-business sector. 

Prof van Niekerk elaborates: “Food systems can be defined as the processes involved in providing food, fibre, and fuel products. These processes include growing, harvesting, processing, preparing, packaging, transporting, marketing, consumption, and waste management.”

“In terms of the academic structure at the UFS, the processing, preparing, and packaging of food resided within the Department of Consumer Sciences. The processes of growing, harvesting and food production, on the other hand, resided within the Centre for Sustainable Agriculture. The newly established Department of Sustainable Food Systems and Development holds the potential to combine the academic expertise of two separate entities into an interdisciplinary body that focuses on sustainable food systems from a holistic perspective.”

Relevant on a global scale

According to Prof Frikkie Neser, Head of the now Department of Animal Science, it is a worldwide phenomenon that Animal Science and all its related disciplines are classified under the name Animal Science.

As part of the changes in this discipline, Meat Science, Dairy Science, and Wool Science will again be presented within the department. Meat scientist, Prof Arno Hugo, and dairy scientist, Dr Koos Myburgh, and their support staff also joined the department. 

According to Prof Neser, the changes will also lead to the establishment of a Meat and Dairy Unit, an Animal Breeding Genomics and Bioinformatics Unit (ABGB), and a Dairy Processing Unit. The latter will be hosted on the Paradys Experimental Farm outside Bloemfontein.

Prof Neser says that changes to the department will simplify the curriculum without compromising the quality of the content or the professional registration of Animal Science students.

“Students will be exposed to the full value chain in meat, dairy, and wool, and research and product development can be conducted in our own fully equipped facilities,” says Prof Neser.

The changes will also lead to a better service to the industry. “Quality as well as chemical and microbial composition of meat will be tested for the whole meat industry. A similar service will also be provided for the dairy industry,” he says.

“A consulting service will also be available,” adds Prof Neser.

Furthermore, he says that the ABGB Unit will provide a statistical and analytical service to the university and the industry. “With the unit, it is possible to create a research facility that can coordinate and enhance all animal breeding research in the country, which will help South Africa to remain relevant on a global scale.”

As much as it will have a global footprint, the department will also add value on a local basis by presenting short courses in all disciplines for both commercial and emerging farmers, as well as the community as a whole.

“We will also continue to build on relationships with other universities, research and government institutions,” says Prof Neser.

Changes to Division of Food Science 

Another significant change that took place in the faculty was in the Division of Food Science. With the changes taking place in the Division of Food Science, the Department of Microbial, Biochemical and Food Biotechnology is now known as the Department of Microbiology and Biochemistry.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept