Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Leonie Bolleurs | Photo istock
The Faculty of Natural and Agricultural Sciences has reorganised three of its departments, and as a result the Departments of Animal Science, Microbiology and Biochemistry, and Sustainable Food Systems and Development have been established.

In a continuous effort to inspire excellence and transform lives, the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has reorganised three of its departments. The entities that were affected include what was known as the Department of Consumer Science; the Department of Animal, Wildlife and Grassland Sciences; and the Division of Food Science.

The Department of Animal, Wildlife and Grassland Sciences has changed to Animal Science, while the Department of Consumer Science and the Centre for Sustainable Agriculture, Rural Development, and Extension (CENSARDE) merged to become the Department of Sustainable Food Systems and Development.

Sustainable food systems

Both the Department of Consumer Science and CENSARDE are major contributors to studies on food systems. According to Prof Johan van Niekerk, Head of the new Department of Sustainable Food Systems and Development, the two academic entities create a natural link that provides the potential for training, development, and research from a food systems perspective to benefit the local and national agri-business sector. 

Prof van Niekerk elaborates: “Food systems can be defined as the processes involved in providing food, fibre, and fuel products. These processes include growing, harvesting, processing, preparing, packaging, transporting, marketing, consumption, and waste management.”

“In terms of the academic structure at the UFS, the processing, preparing, and packaging of food resided within the Department of Consumer Sciences. The processes of growing, harvesting and food production, on the other hand, resided within the Centre for Sustainable Agriculture. The newly established Department of Sustainable Food Systems and Development holds the potential to combine the academic expertise of two separate entities into an interdisciplinary body that focuses on sustainable food systems from a holistic perspective.”

Relevant on a global scale

According to Prof Frikkie Neser, Head of the now Department of Animal Science, it is a worldwide phenomenon that Animal Science and all its related disciplines are classified under the name Animal Science.

As part of the changes in this discipline, Meat Science, Dairy Science, and Wool Science will again be presented within the department. Meat scientist, Prof Arno Hugo, and dairy scientist, Dr Koos Myburgh, and their support staff also joined the department. 

According to Prof Neser, the changes will also lead to the establishment of a Meat and Dairy Unit, an Animal Breeding Genomics and Bioinformatics Unit (ABGB), and a Dairy Processing Unit. The latter will be hosted on the Paradys Experimental Farm outside Bloemfontein.

Prof Neser says that changes to the department will simplify the curriculum without compromising the quality of the content or the professional registration of Animal Science students.

“Students will be exposed to the full value chain in meat, dairy, and wool, and research and product development can be conducted in our own fully equipped facilities,” says Prof Neser.

The changes will also lead to a better service to the industry. “Quality as well as chemical and microbial composition of meat will be tested for the whole meat industry. A similar service will also be provided for the dairy industry,” he says.

“A consulting service will also be available,” adds Prof Neser.

Furthermore, he says that the ABGB Unit will provide a statistical and analytical service to the university and the industry. “With the unit, it is possible to create a research facility that can coordinate and enhance all animal breeding research in the country, which will help South Africa to remain relevant on a global scale.”

As much as it will have a global footprint, the department will also add value on a local basis by presenting short courses in all disciplines for both commercial and emerging farmers, as well as the community as a whole.

“We will also continue to build on relationships with other universities, research and government institutions,” says Prof Neser.

Changes to Division of Food Science 

Another significant change that took place in the faculty was in the Division of Food Science. With the changes taking place in the Division of Food Science, the Department of Microbial, Biochemical and Food Biotechnology is now known as the Department of Microbiology and Biochemistry.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept