Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 February 2021 | Story Leonie Bolleurs | Photo Charl Devenish
Dr Alice Ncube says that since coming to South Africa and working with vulnerable communities in the disaster (risk) management field, she has gained extensive knowledge and perspectives on the real-life situations of humanity.

While working in human resources and industrial-relations management portfolios, Dr Alice Ncube saw a window of opportunity to get into research, focusing on the challenges that was threatening the human capital management sectors and the general operations of governments and the private sector. 

Today, Dr Ncube is teaching students and doing research in the Disaster Management Training and Education Centre (DiMTEC) at the University of the Free State (UFS), where she is a Senior Lecturer and Programme Director.

On 11 February – International Day of Women and Girls in Science – the UFS is celebrating Dr Ncube, who chose to be a scientist due to her desire to make a difference. 

Being a migrant facing several challenges in her host country motivated her to do her PhD on international migration, specifically on women from developing countries to other developing countries such as South Africa.

Her research also covers related topics, including social vulnerability and resilience, international forced migration, gender issues, climate change and adaptation, and sustainable livelihoods of disadvantaged communities.

Demystifying perceptions

“Many persons who do not reside in the country believe that South Africa is a land of opportunities – socially, politically, and economically – due to its position on the African continent. This all-round positive picture of the country painted to the outside world is the main reason for the huge inflow of migrants into the country,” believes Dr Ncube. 

She envisaged that her study would assist in demystifying the perception that migrants are those who come to a host country to take local jobs and put pressure on local resources.

“I felt that gender migration in this space is under-researched, particularly migration of women. Migration is not gender neutral, but gender biased, as evidenced by the 1960s and early 1970s, where terms such as ‘migrants and their families’ were coded to refer to male migrants and their wives and children. Although women were nearly invisible, there is evidence of them migrating as independent agencies and also taking along their families, including husbands,” she explains.

Exploring the coping and adaptation strategies that women employ in the host country, she found that although faced with many challenges, the migrant women cope and adapt well.

Her research as well as her work of more than 10 years with the vulnerable communities, including migrants, has established that the resilience of vulnerable communities is bigger than the intervention strategies that governments and other stakeholders envisage.

People are hungry for knowledge that will better their lives. – Dr Alice Ncube

Impacting lives

“Since coming to South Africa and working with vulnerable communities in the disaster (risk) management field, I have gained extensive knowledge and perspectives on the real-life situations of humanity, let alone in our continent and region,” she says.

She has worked with government departments at local, district, provincial, and national levels in an effort to change the conditions faced by poor, marginalised, and disadvantaged communities. Dr Ncube was also involved in community capacity-building activities through short courses and short learning programmes. 

She considers the training she has presented as one of the biggest achievements of her life. “People are hungry for knowledge that will better their lives.” 

“This has been so fulfilling to me as I have made an impact on the lives of the people,” says Dr Ncube.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept