Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 February 2021 | Story Leonie Bolleurs | Photo Ané van der Merwe
Dr Ismari van der Merwe was instrumental in establishing the new Department of Sustainable Food Systems and Development.

Dr Ismari van der Merwe believes that by forging strong relationships, women can affect virtually every aspect of their students' lives, teaching them vital life lessons that will help them succeed beyond term papers and standardised tests. 

She states that it is not always easy to change a student's life, so it takes a great teacher to do so. “You, as a teacher, have a very significant, lifelong impact on all your students. This impact involves not only the teaching of particular academic skills, but as importantly, the fostering of student self-esteem.”

“Reinforcing self-esteem in the classroom is associated with increased motivation and learning,” she says.

Dr Van der Merwe is Lecturer and Programme Director in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS).

On 11 February – International Day of Women and Girls in Science – the UFS is celebrating her not only for the impact she has on her students, but also for being instrumental in establishing the new Department of Sustainable Food Systems and Development, putting the UFS on the international forefront.

A sustainable food system

“We want our students to be part of a sustainable food system that provides healthy food that meets food needs, while maintaining healthy ecosystems that can also provide food for generations to come, with minimal negative impact to the environment,” she says. 

“The right to food is a fundamental human right.”

Dr Van der Merwe believes that a healthy personal food system and how it is managed is now more critical than ever before. 

Her current work involves managing the five main food-related values of taste, health, cost, time, and social relationships, as well as other less prominent values of symbolism, ethics, variety, safety, waste, and quality within these personal food systems. She feels the prominence of these values varies among us as well as across our eating situations. “More research on this will be fascinating,” says Dr Van der Merwe. 

A male-dominated field

On the role of women in science, Dr Van der Merwe says it is often considered a male-dominated field. “According to United Nations data, less than 30% of scientific researchers worldwide are women,” she states.

Telling her story about becoming a scientist, she says that science chose her. “Many scientists have reported that their interest and curiosity in science or the natural world started in early childhood.”

We want our students to be part of a sustainable food system that provides healthy food that meets food needs, while maintaining healthy ecosystems that can also provide food for generations to come, with minimal negative impact to the environment. – Dr Ismari van der Merwe

 

“I started as a teacher and ended up working for the Agricultural Research Council, where I was responsible for a research programme on dry beans and started a small-scale research factory.”

“Later when we moved to Bloemfontein, I joined the UFS. Here I am privileged to be able to do research and teach. Science chose me as part of my life journey, and I never looked back.”

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept