Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Supplied | Photo Supplied
Dr João Vidal is a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS).

According to United Nations data projections for 2100, sub-Saharan Africa is set to experience a demographic explosion. The most rapid population growth zones in Africa are in or around mountains and the importance of managing these mountain ecosystems sustainably in order to maintain the benefits to such a growing population is critical, says Dr João Vidal, a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS). 

The link between human population growth and the demand for water will impact these mountain grasslands. All of Africa’s important rivers originate in mountainous areas. The sustainable management of African mountain landscapes is thus vital for the sustained provision of quality water in suitable quantities. “Water is already limited in some places. This year we are facing another drought in South Africa, and if it was not for the mountains, it could have been much worse. The long-term resilience of Southern Africa’s mountains and their ecosystem services should be an absolute priority for both research and conservation,” says Dr Vidal.

Human population growth has several implications

As a mountain ecologist, his recent research is centred on developing indicators for monitoring biodiversity change in Southern Africa’s mountains. This is a collaborative research project with the South African Environmental Observation Network (SAEON), Ezemvelo KZN Wildlife, and the University of Pretoria.

Human population growth, as predicted for Southern Africa, has several implications for natural-resource management and biodiversity conservation. “Southern Africa has one of the highest proportions of grassland-dominated mountains in the world, comparable only to Central Asia,” says Dr Vidal. 

In December, UN Secretary-General António Guterres said during the launch of the 2021 Global Humanitarian Overview: “Conflict, climate change and COVID-19 have created the greatest humanitarian challenge since the Second World War. The number of people at risk of starvation has doubled. Hundreds of millions of children are out of school. Levels of extreme poverty have risen for the first time in 22 years.”

According to Dr Vidal this new scenario significantly increases the pressure on mountain environments and their biota, since people will have to find alternative ways of feeding their families, their animals, while the economy struggles to recover globally.

Through his research, Dr Vidal – together with a growing community of practices for Southern Africa’s mountains – aims to understand the socio-ecological functioning of these montane grasslands in order to encourage a science-policy-action interface for their sustainable management in a changing world. 


Alternative ways for measuring environmental change in mountains

Since much global mountain research is focused on forest-dominated mountains, Dr Vidal and his collaborators are developing specific tools to track climate change in grassy mountains.
He explains: “When you look at the available tools for tracking climate change in mountains, you have a tree line for many mountains in the world. However, with the Southern African grassy mountains, it is impossible to use such a tool. We are working on alternative ways for measuring environmental change in our mountains.

“As it gets warmer, certain communities of grasses may retract towards higher elevations because they need a certain minimum temperature to survive. The problem seems to be that current climate change is occurring at a much faster rate than most species might be able to retract. This means that higher temperatures may lead to habitat losses for temperature-vulnerable groups.

“Climate change is also making mountains increasingly vulnerable to ecological invasion by non-native species. The severe temperatures in mountains are a good barrier for many problematic lowland species. But with warmer temperatures in the mountains, these barriers are being weakened, increasing the number of potentially invasive plants in our mountains. With higher temperatures there is potential for a large guild of invasive trees to overrun grassland mountains affecting waterflow into dams and rivers. Examples are pines, willows, gums, and wattles, to name a few.

“The presence of invasive trees, especially along rivers, has long-term negative impacts on the functioning of mountain catchments. These trees destabilise riverbanks, extract large amounts of water, and cause local extinction of endemic montane biodiversity. In drier environments such as grasslands, this exacerbates the fragile water productivity,” he adds.

Global policymakers to recognise the value of grassy mountains 

It is important to draw attention to the value of natural grassy mountain systems around the world and to how threatened they are. The world’s grassy mountains need to be better studied and better placed on the global stage. This will encourage policy makers to recognise these systems and implement appropriate measures to facilitate their sustainable management. 

For the first time in 20 years, the recent International Panel of Climate Change (IPCC) report to the United Nations included a chapter focusing solely on mountains. “Policymakers are finally realising how disproportionately important mountain environments are and how dramatically they are affected by climate change,” says Dr Vidal. 

However, African mountains are underrepresented in research literature; it is the only continent for which there is no data included in the IPCC report. There is an urgent need to represent African mountains – especially Southern Africa’s mountains – on the global stage when it comes to climate change,” states Dr Vidal.

Dr Vidal is conducting this study in partnership with Dr Ralph Clark, Director of the ARU on the UFS Qwaqwa Campus

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept