Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Supplied | Photo Supplied
Dr João Vidal is a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS).

According to United Nations data projections for 2100, sub-Saharan Africa is set to experience a demographic explosion. The most rapid population growth zones in Africa are in or around mountains and the importance of managing these mountain ecosystems sustainably in order to maintain the benefits to such a growing population is critical, says Dr João Vidal, a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS). 

The link between human population growth and the demand for water will impact these mountain grasslands. All of Africa’s important rivers originate in mountainous areas. The sustainable management of African mountain landscapes is thus vital for the sustained provision of quality water in suitable quantities. “Water is already limited in some places. This year we are facing another drought in South Africa, and if it was not for the mountains, it could have been much worse. The long-term resilience of Southern Africa’s mountains and their ecosystem services should be an absolute priority for both research and conservation,” says Dr Vidal.

Human population growth has several implications

As a mountain ecologist, his recent research is centred on developing indicators for monitoring biodiversity change in Southern Africa’s mountains. This is a collaborative research project with the South African Environmental Observation Network (SAEON), Ezemvelo KZN Wildlife, and the University of Pretoria.

Human population growth, as predicted for Southern Africa, has several implications for natural-resource management and biodiversity conservation. “Southern Africa has one of the highest proportions of grassland-dominated mountains in the world, comparable only to Central Asia,” says Dr Vidal. 

In December, UN Secretary-General António Guterres said during the launch of the 2021 Global Humanitarian Overview: “Conflict, climate change and COVID-19 have created the greatest humanitarian challenge since the Second World War. The number of people at risk of starvation has doubled. Hundreds of millions of children are out of school. Levels of extreme poverty have risen for the first time in 22 years.”

According to Dr Vidal this new scenario significantly increases the pressure on mountain environments and their biota, since people will have to find alternative ways of feeding their families, their animals, while the economy struggles to recover globally.

Through his research, Dr Vidal – together with a growing community of practices for Southern Africa’s mountains – aims to understand the socio-ecological functioning of these montane grasslands in order to encourage a science-policy-action interface for their sustainable management in a changing world. 


Alternative ways for measuring environmental change in mountains

Since much global mountain research is focused on forest-dominated mountains, Dr Vidal and his collaborators are developing specific tools to track climate change in grassy mountains.
He explains: “When you look at the available tools for tracking climate change in mountains, you have a tree line for many mountains in the world. However, with the Southern African grassy mountains, it is impossible to use such a tool. We are working on alternative ways for measuring environmental change in our mountains.

“As it gets warmer, certain communities of grasses may retract towards higher elevations because they need a certain minimum temperature to survive. The problem seems to be that current climate change is occurring at a much faster rate than most species might be able to retract. This means that higher temperatures may lead to habitat losses for temperature-vulnerable groups.

“Climate change is also making mountains increasingly vulnerable to ecological invasion by non-native species. The severe temperatures in mountains are a good barrier for many problematic lowland species. But with warmer temperatures in the mountains, these barriers are being weakened, increasing the number of potentially invasive plants in our mountains. With higher temperatures there is potential for a large guild of invasive trees to overrun grassland mountains affecting waterflow into dams and rivers. Examples are pines, willows, gums, and wattles, to name a few.

“The presence of invasive trees, especially along rivers, has long-term negative impacts on the functioning of mountain catchments. These trees destabilise riverbanks, extract large amounts of water, and cause local extinction of endemic montane biodiversity. In drier environments such as grasslands, this exacerbates the fragile water productivity,” he adds.

Global policymakers to recognise the value of grassy mountains 

It is important to draw attention to the value of natural grassy mountain systems around the world and to how threatened they are. The world’s grassy mountains need to be better studied and better placed on the global stage. This will encourage policy makers to recognise these systems and implement appropriate measures to facilitate their sustainable management. 

For the first time in 20 years, the recent International Panel of Climate Change (IPCC) report to the United Nations included a chapter focusing solely on mountains. “Policymakers are finally realising how disproportionately important mountain environments are and how dramatically they are affected by climate change,” says Dr Vidal. 

However, African mountains are underrepresented in research literature; it is the only continent for which there is no data included in the IPCC report. There is an urgent need to represent African mountains – especially Southern Africa’s mountains – on the global stage when it comes to climate change,” states Dr Vidal.

Dr Vidal is conducting this study in partnership with Dr Ralph Clark, Director of the ARU on the UFS Qwaqwa Campus

News Archive

Boyden Observatory turns 120
2009-05-13

 

At the celebration of the 120th year of existence of the UFS's Boyden Observatory are, from the left: Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, Prof. Driekie Hay, Vice-Rector: Academic Planning at the UFS, Mr Ian Heyns from AngloGold Ashanti and his wife, Cheryl, and Prof. François Retief, former rector of the UFS and patron of the Friends of Boyden.
Photo: Hannes Pieterse

The Boyden Observatory, one of the oldest observatories in the Southern Hemisphere and a prominent beacon in Bloemfontein, recently celebrated its 120th year of existence.

This milestone was celebrated by staff, students, other dignitaries of the University of the Free State (UFS) and special guests at the observatory last week.

“The observatory provides the Free State with a unique scientific, educational and tourist facility. No other city in South Africa, and few in the world, has a public observatory with telescopes the size and quality of those at Boyden,” said Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the UFS.

The observatory, boasting the third-largest optical telescope in South Africa, has a long and illustrious history. It was established on a temporary site on Mount Harvard near the small town of Chosica, Peru in 1889. Later it was moved to Arequipa in Peru where important astronomical observations were made from 1891 to 1926. “However, due to unstable weather patterns and observing conditions, it was decided to move the Boyden Station to another site somewhere else in the Southern Hemisphere, maybe South Africa,” said Prof. Van Schalkwyk.

South Africa's excellent climatic conditions were fairly well known and in 1927 the instruments were shipped and the Boyden Station was set up next to Maselspoort near Bloemfontein. Observations began in September 1927 and in 1933 the new site was officially completed, including the 60 inch (1.5 m) telescope, which was then the largest optical telescope in the Southern Hemisphere. This telescope was recently refurbished to a modern research instrument.

The observatory has various other telescopes and one of them, the 13" refractor telescope, which was sent to Arequipa in 1891 and later to Bloemfontein, is still in an excellent condition. Another important telescope is the Watcher Robotic Telescope of the University College Dublin, which conducts many successful observations of gamma ray bursts.

“In the first few decades of the twentieth century, the Boyden Observatory contributed considerably to our understanding of the secrets of the universe at large. The period luminosity relationship of the Cepheid variable stars was, for example, discovered from observations obtained at Boyden. This relationship is one of the cornerstones of modern astrophysics. It is currently used to make estimates of the size and age of the universe from observations of the Hubble Space Telescope,” said Prof. Van Schalkwyk.

“The Boyden Observatory contributed to the university’s astrophysics research group being able to produce the first M.Sc. degrees associated with the National Space Science Programme (NASSAP) in the country and the Boyden Science Centre plays an important role in science and technology awareness of learners, teachers and the general public,” said Prof. Van Schalkwyk.

The Boyden Science Centre has also formed strong relationships with various institutions, including the South African Agency for the Advancement of Science and Technology (SAASTA) and the Department of Science and Technology. The centre has already conducted many different projects for the Department of Science and Technology, including National Science Week projects, as well as National Astronomy Month projects. It also serves as one of the hosts of SAASTA’s annual Astronomy Quiz.

Media Release:
Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept